
React Docs
v18.2.0

react.org

2022-08-14



React Docs
License
Installation

Getting Started
Add React to a Website
Create a New React App
CDN Links
Release Channels

Main Concepts
Hello World
Introducing JSX
Rendering Elements
Components and Props
State and Lifecycle
Handling Events
Conditional Rendering
Lists and Keys
Forms
Lifting State Up
Composition vs Inheritance
Thinking in React

Advanced Guides
Accessibility
Accessibility
Code-Splitting
Context
Error Boundaries
Forwarding Refs
Fragments
Higher-Order Components
Integrating with Other Libraries
JSX In Depth
Optimizing Performance
Portals



Profiler API
React Without ES6
React Without JSX
Reconciliation
Refs and the DOM
Render Props
Static Type Checking
Strict Mode
Typechecking With PropTypes
Uncontrolled Components
Web Components

API Reference
React Top-Level API
React.Component
ReactDOM
ReactDOMClient
ReactDOMServer
DOM Elements
SyntheticEvent
Test Utilities
Test Renderer
JavaScript Environment Requirements
Glossary of React Terms

Hooks
Introducing Hooks
Hooks at a Glance
Using the State Hook
Using the Effect Hook
Rules of Hooks
Building Your Own Hooks
Hooks API Reference
Hooks FAQ

Testing
Testing Overview
Testing Recipes
Testing Environments

Contributing



How to Contribute
Codebase Overview
Implementation Notes
Design Principles

FAQ
AJAX and APIs
Babel, JSX, and Build Steps
Passing Functions to Components
Component State
Styling and CSS
File Structure
Versioning Policy
Virtual DOM and Internals



License
MIT License

Copyright (c) Facebook, Inc. and its affiliates.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to
do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



Installation
Getting Started

This page is an overview of the React documentation and related resources.

React is a JavaScript library for building user interfaces. Learn what React
is all about on our homepage or in the tutorial.

Try React
Learn React
Staying Informed
Versioned Documentation
Something Missing?

Try React

React has been designed from the start for gradual adoption, and you can
use as little or as much React as you need. Whether you want to get a
taste of React, add some interactivity to a simple HTML page, or start a
complex React-powered app, the links in this section will help you get
started.

Online Playgrounds

If you’re interested in playing around with React, you can use an online
code playground. Try a Hello World template on CodePen, CodeSandbox,
or Stackblitz.

If you prefer to use your own text editor, you can also download this HTML
file, edit it, and open it from the local filesystem in your browser. It does a
slow runtime code transformation, so we’d only recommend using this for
simple demos.

file:///C:/
https://reactjs.org/tutorial/tutorial.html
codepen://hello-world
https://codesandbox.io/s/new
https://stackblitz.com/fork/react
https://raw.githubusercontent.com/reactjs/reactjs.org/main/static/html/single-file-example.html


Add React to a Website

You can add React to an HTML page in one minute. You can then either
gradually expand its presence, or keep it contained to a few dynamic
widgets.

Create a New React App

When starting a React project, a simple HTML page with script tags might
still be the best option. It only takes a minute to set up!

As your application grows, you might want to consider a more integrated
setup. There are several JavaScript toolchains we recommend for larger
applications. Each of them can work with little to no configuration and lets
you take full advantage of the rich React ecosystem. Learn how.

Learn React

People come to React from different backgrounds and with different
learning styles. Whether you prefer a more theoretical or a practical
approach, we hope you’ll find this section helpful.

If you prefer to learn by doing, start with our practical tutorial.
If you prefer to learn concepts step by step, start with our guide to
main concepts.

Like any unfamiliar technology, React does have a learning curve. With
practice and some patience, you will get the hang of it.

First Examples

The React homepage contains a few small React examples with a live
editor. Even if you don’t know anything about React yet, try changing their
code and see how it affects the result.

React for Beginners

https://reactjs.org/tutorial/tutorial.html
file:///C:/


If you feel that the React documentation goes at a faster pace than you’re
comfortable with, check out this overview of React by Tania Rascia. It
introduces the most important React concepts in a detailed, beginner-
friendly way. Once you’re done, give the documentation another try!

React for Designers

If you’re coming from a design background, these resources are a great
place to get started.

JavaScript Resources

The React documentation assumes some familiarity with programming in
the JavaScript language. You don’t have to be an expert, but it’s harder to
learn both React and JavaScript at the same time.

We recommend going through this JavaScript overview to check your
knowledge level. It will take you between 30 minutes and an hour but you
will feel more confident learning React.

Tip

Whenever you get confused by something in JavaScript, MDN and
javascript.info are great websites to check. There are also community
support forums where you can ask for help.

Practical Tutorial

If you prefer to learn by doing, check out our practical tutorial. In this
tutorial, we build a tic-tac-toe game in React. You might be tempted to skip
it because you’re not into building games – but give it a chance. The
techniques you’ll learn in the tutorial are fundamental to building any React
apps, and mastering it will give you a much deeper understanding.

Step-by-Step Guide

https://www.taniarascia.com/getting-started-with-react/
https://reactfordesigners.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://javascript.info/
file:///C:/community/support.html
https://reactjs.org/tutorial/tutorial.html


If you prefer to learn concepts step by step, our guide to main concepts is
the best place to start. Every next chapter in it builds on the knowledge
introduced in the previous chapters so you won’t miss anything as you go
along.

Thinking in React

Many React users credit reading Thinking in React as the moment React
finally “clicked” for them. It’s probably the oldest React walkthrough but
it’s still just as relevant.

Recommended Courses

Sometimes people find third-party books and video courses more helpful
than the official documentation. We maintain a list of commonly
recommended resources, some of which are free.

Advanced Concepts

Once you’re comfortable with the main concepts and played with React a
little bit, you might be interested in more advanced topics. This section will
introduce you to the powerful, but less commonly used React features like
context and refs.

API Reference

This documentation section is useful when you want to learn more details
about a particular React API. For example, React.Component API reference
can provide you with details on how setState() works, and what different
lifecycle methods are useful for.

Glossary and FAQ

The glossary contains an overview of the most common terms you’ll see in
the React documentation. There is also a FAQ section dedicated to short

file:///C:/community/courses.html


questions and answers about common topics, including making AJAX
requests, component state, and file structure.

Staying Informed

The React blog is the official source for the updates from the React team.
Anything important, including release notes or deprecation notices, will be
posted there first.

You can also follow the @reactjs account on Twitter, but you won’t miss
anything essential if you only read the blog.

Not every React release deserves its own blog post, but you can find a
detailed changelog for every release in the CHANGELOG.md file in the React
repository, as well as on the Releases page.

Versioned Documentation

This documentation always reflects the latest stable version of React. Since
React 16, you can find older versions of the documentation on a separate
page. Note that documentation for past versions is snapshotted at the time
of the release, and isn’t being continuously updated.

Something Missing?

If something is missing in the documentation or if you found some part
confusing, please file an issue for the documentation repository with your
suggestions for improvement, or tweet at the @reactjs account. We love
hearing from you!

Add React to a Website

Use as little or as much React as you need.

React has been designed from the start for gradual adoption, and you can
use as little or as much React as you need. Perhaps you only want to add

file:///C:/blog/
https://twitter.com/reactjs
https://github.com/facebook/react/blob/main/CHANGELOG.md
https://github.com/facebook/react/releases
file:///C:/versions
https://github.com/reactjs/reactjs.org/issues/new
https://twitter.com/reactjs


some “sprinkles of interactivity” to an existing page. React components are
a great way to do that.

The majority of websites aren’t, and don’t need to be, single-page apps.
With a few lines of code and no build tooling, try React in a small part of
your website. You can then either gradually expand its presence, or keep it
contained to a few dynamic widgets.

Add React in One Minute
Optional: Try React with JSX (no bundler necessary!)

Add React in One Minute

In this section, we will show how to add a React component to an existing
HTML page. You can follow along with your own website, or create an
empty HTML file to practice.

There will be no complicated tools or install requirements – to complete
this section, you only need an internet connection, and a minute of your
time.

Optional: Download the full example (2KB zipped)

Step 1: Add a DOM Container to the HTML

First, open the HTML page you want to edit. Add an empty <div> tag to
mark the spot where you want to display something with React. For
example:

<!-- ... existing HTML ... --> 
 
<div id="like_button_container"></div> 
 
<!-- ... existing HTML ... -->

We gave this <div> a unique id HTML attribute. This will allow us to find
it from the JavaScript code later and display a React component inside of it.

https://gist.github.com/gaearon/6668a1f6986742109c00a581ce704605/archive/87f0b6f34238595b44308acfb86df6ea43669c08.zip


Tip

You can place a “container” <div> like this anywhere inside the 
<body> tag. You may have as many independent DOM containers on
one page as you need. They are usually empty – React will replace any
existing content inside DOM containers.

Step 2: Add the Script Tags

Next, add three <script> tags to the HTML page right before the closing 
</body> tag:

  <!-- ... other HTML ... --> 
 
  <!-- Load React. --> 
  <!-- Note: when deploying, replace "development.js" with 
"production.min.js". --> 
  <script 
src="https://unpkg.com/react@18/umd/react.development.js" 
crossorigin></script> 
  <script src="https://unpkg.com/react-dom@18/umd/react-
dom.development.js" crossorigin></script> 
 
  <!-- Load our React component. --> 
  <script src="like_button.js"></script> 
 
</body>

The first two tags load React. The third one will load your component code.

Step 3: Create a React Component

Create a file called like_button.js next to your HTML page.

Open this starter code and paste it into the file you created.

Tip

This code defines a React component called LikeButton. Don’t worry
if you don’t understand it yet – we’ll cover the building blocks of

https://gist.github.com/gaearon/0b180827c190fe4fd98b4c7f570ea4a8/raw/b9157ce933c79a4559d2aa9ff3372668cce48de7/LikeButton.js


React later in our hands-on tutorial and main concepts guide. For now,
let’s just get it showing on the screen!

After the starter code, add three lines to the bottom of like_button.js:

// ... the starter code you pasted ... 
 
const domContainer = 
document.querySelector('#like_button_container'); 
const root = ReactDOM.createRoot(domContainer); 
root.render(e(LikeButton));

These three lines of code find the <div> we added to our HTML in the first
step, create a React app with it, and then display our “Like” button React
component inside of it.

That’s It!

There is no step four. You have just added the first React component to
your website.

Check out the next sections for more tips on integrating React.

View the full example source code

Download the full example (2KB zipped)

Tip: Reuse a Component

Commonly, you might want to display React components in multiple places
on the HTML page. Here is an example that displays the “Like” button
three times and passes some data to it:

View the full example source code

Download the full example (2KB zipped)

Note

https://reactjs.org/tutorial/tutorial.html
https://gist.github.com/gaearon/0b180827c190fe4fd98b4c7f570ea4a8/raw/b9157ce933c79a4559d2aa9ff3372668cce48de7/LikeButton.js
https://gist.github.com/gaearon/6668a1f6986742109c00a581ce704605
https://gist.github.com/gaearon/6668a1f6986742109c00a581ce704605/archive/87f0b6f34238595b44308acfb86df6ea43669c08.zip
https://gist.github.com/gaearon/faa67b76a6c47adbab04f739cba7ceda
https://gist.github.com/gaearon/faa67b76a6c47adbab04f739cba7ceda/archive/279839cb9891bd41802ebebc5365e9dec08eeb9f.zip


This strategy is mostly useful while React-powered parts of the page
are isolated from each other. Inside React code, it’s easier to use
component composition instead.

Tip: Minify JavaScript for Production

Before deploying your website to production, be mindful that unminified
JavaScript can significantly slow down the page for your users.

If you already minify the application scripts, your site will be production-
ready if you ensure that the deployed HTML loads the versions of React
ending in production.min.js:

If you don’t have a minification step for your scripts, here’s one way to set
it up.

Optional: Try React with JSX

In the examples above, we only relied on features that are natively
supported by browsers. This is why we used a JavaScript function call to
tell React what to display:

However, React also offers an option to use JSX instead:

<script src="https://unpkg.com/react@18/umd/react.production.min
<script src="https://unpkg.com/react-dom@18/umd/react-dom.produc

const e = React.createElement;

// Display a "Like" <button>
return e(
 'button',
 { onClick: () => this.setState({ liked: true }) },
 'Like'
);

// Display a "Like" <button>
return (

https://gist.github.com/gaearon/42a2ffa41b8319948f9be4076286e1f3


These two code snippets are equivalent. While JSX is completely optional,
many people find it helpful for writing UI code – both with React and with
other libraries.

You can play with JSX using this online converter.

Quickly Try JSX

The quickest way to try JSX in your project is to add this <script> tag to
your page:

Now you can use JSX in any <script> tag by adding type="text/babel"
attribute to it. Here is an example HTML file with JSX that you can
download and play with.

This approach is fine for learning and creating simple demos. However, it
makes your website slow and isn’t suitable for production. When you’re
ready to move forward, remove this new <script> tag and the 
type="text/babel" attributes you’ve added. Instead, in the next section
you will set up a JSX preprocessor to convert all your <script> tags
automatically.

Add JSX to a Project

Adding JSX to a project doesn’t require complicated tools like a bundler or
a development server. Essentially, adding JSX is a lot like adding a CSS
preprocessor. The only requirement is to have Node.js installed on your
computer.

Go to your project folder in the terminal, and paste these two commands:

 <button onClick={() => this.setState({ liked: true })}>
   Like
 </button>
);

<script src="https://unpkg.com/babel-standalone@6/babel.min.js">

https://babeljs.io/en/repl#?babili=false&browsers=&build=&builtIns=false&spec=false&loose=false&code_lz=DwIwrgLhD2B2AEcDCAbAlgYwNYF4DeAFAJTw4B88EAFmgM4B0tAphAMoQCGETBe86WJgBMAXJQBOYJvAC-RGWQBQ8FfAAyaQYuAB6cFDhkgA&debug=false&forceAllTransforms=false&shippedProposals=false&circleciRepo=&evaluate=false&fileSize=false&timeTravel=false&sourceType=module&lineWrap=true&presets=es2015%2Creact%2Cstage-2&prettier=false&targets=&version=7.15.7
https://raw.githubusercontent.com/reactjs/reactjs.org/main/static/html/single-file-example.html
https://nodejs.org/


1. Step 1: Run npm init -y (if it fails, here’s a fix)
2. Step 2: Run npm install babel-cli@6 babel-preset-react-app@3

Tip

We’re using npm here only to install the JSX preprocessor; you
won’t need it for anything else. Both React and the application code
can stay as <script> tags with no changes.

Congratulations! You just added a production-ready JSX setup to your
project.

Run JSX Preprocessor

Create a folder called src and run this terminal command:

npx babel --watch src --out-dir . --presets react-app/prod

Note

npx is not a typo – it’s a package runner tool that comes with npm
5.2+.

If you see an error message saying “You have mistakenly installed the 
babel package”, you might have missed the previous step. Perform it
in the same folder, and then try again.

Don’t wait for it to finish – this command starts an automated watcher for
JSX.

If you now create a file called src/like_button.js with this JSX starter
code, the watcher will create a preprocessed like_button.js with the plain
JavaScript code suitable for the browser. When you edit the source file with
JSX, the transform will re-run automatically.

As a bonus, this also lets you use modern JavaScript syntax features like
classes without worrying about breaking older browsers. The tool we just

https://gist.github.com/gaearon/246f6380610e262f8a648e3e51cad40d
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://gist.github.com/gaearon/c8e112dc74ac44aac4f673f2c39d19d1/raw/09b951c86c1bf1116af741fa4664511f2f179f0a/like_button.js


used is called Babel, and you can learn more about it from its
documentation.

If you notice that you’re getting comfortable with build tools and want them
to do more for you, the next section describes some of the most popular and
approachable toolchains. If not – those script tags will do just fine!

Create a New React App

Use an integrated toolchain for the best user and developer experience.

This page describes a few popular React toolchains which help with tasks
like:

Scaling to many files and components.
Using third-party libraries from npm.
Detecting common mistakes early.
Live-editing CSS and JS in development.
Optimizing the output for production.

The toolchains recommended on this page don’t require configuration to
get started.

You Might Not Need a Toolchain

If you don’t experience the problems described above or don’t feel
comfortable using JavaScript tools yet, consider adding React as a plain 
<script> tag on an HTML page, optionally with JSX.

This is also the easiest way to integrate React into an existing website.
You can always add a larger toolchain if you find it helpful!

Recommended Toolchains

The React team primarily recommends these solutions:

https://babeljs.io/docs/en/babel-cli/


If you’re learning React or creating a new single-page app, use
Create React App.
If you’re building a server-rendered website with Node.js, try
Next.js.
If you’re building a static content-oriented website, try Gatsby.
If you’re building a component library or integrating with an
existing codebase, try More Flexible Toolchains.

Create React App

Create React App is a comfortable environment for learning React, and is
the best way to start building a new single-page application in React.

It sets up your development environment so that you can use the latest
JavaScript features, provides a nice developer experience, and optimizes
your app for production. You’ll need to have Node >= 14.0.0 and npm >=
5.6 on your machine. To create a project, run:

Note

npx on the first line is not a typo – it’s a package runner tool that
comes with npm 5.2+.

Create React App doesn’t handle backend logic or databases; it just creates
a frontend build pipeline, so you can use it with any backend you want.
Under the hood, it uses Babel and webpack, but you don’t need to know
anything about them.

When you’re ready to deploy to production, running npm run build will
create an optimized build of your app in the build folder. You can learn
more about Create React App from its README and the User Guide.

Next.js

npx create-react-app my-app
cd my-app
npm start

https://github.com/facebookincubator/create-react-app
https://nodejs.org/en/
https://medium.com/@maybekatz/introducing-npx-an-npm-package-runner-55f7d4bd282b
https://babeljs.io/
https://webpack.js.org/
https://github.com/facebookincubator/create-react-app#create-react-app--
https://facebook.github.io/create-react-app/


Next.js is a popular and lightweight framework for static and
server‑rendered applications built with React. It includes styling and
routing solutions out of the box, and assumes that you’re using Node.js as
the server environment.

Learn Next.js from its official guide.

Gatsby

Gatsby is the best way to create static websites with React. It lets you use
React components, but outputs pre-rendered HTML and CSS to guarantee
the fastest load time.

Learn Gatsby from its official guide and a gallery of starter kits.

More Flexible Toolchains

The following toolchains offer more flexibility and choice. We recommend
them to more experienced users:

Neutrino combines the power of webpack with the simplicity of
presets, and includes a preset for React apps and React components.

Nx is a toolkit for full-stack monorepo development, with built-in
support for React, Next.js, Express, and more.

Parcel is a fast, zero configuration web application bundler that works
with React.

Razzle is a server-rendering framework that doesn’t require any
configuration, but offers more flexibility than Next.js.

Creating a Toolchain from Scratch

A JavaScript build toolchain typically consists of:

https://nextjs.org/
https://nodejs.org/
https://nextjs.org/learn/
https://www.gatsbyjs.org/
https://www.gatsbyjs.org/docs/
https://www.gatsbyjs.org/docs/gatsby-starters/
https://neutrinojs.org/
https://webpack.js.org/
https://neutrinojs.org/packages/react/
https://neutrinojs.org/packages/react-components/
https://nx.dev/react
https://expressjs.com/
https://parceljs.org/
https://parceljs.org/recipes/react/
https://github.com/jaredpalmer/razzle


A package manager, such as Yarn or npm. It lets you take advantage
of a vast ecosystem of third-party packages, and easily install or
update them.

A bundler, such as webpack or Parcel. It lets you write modular code
and bundle it together into small packages to optimize load time.

A compiler such as Babel. It lets you write modern JavaScript code
that still works in older browsers.

If you prefer to set up your own JavaScript toolchain from scratch, check
out this guide that re-creates some of the Create React App functionality.

Don’t forget to ensure your custom toolchain is correctly set up for
production.

CDN Links

Both React and ReactDOM are available over a CDN.

The versions above are only meant for development, and are not suitable for
production. Minified and optimized production versions of React are
available at:

To load a specific version of react and react-dom, replace 18 with the
version number.

Why the crossorigin Attribute?

<script crossorigin src="https://unpkg.com/react@18/umd/react.de
<script crossorigin src="https://unpkg.com/react-dom@18/umd/reac

<script crossorigin src="https://unpkg.com/react@18/umd/react.pr
<script crossorigin src="https://unpkg.com/react-dom@18/umd/reac

https://yarnpkg.com/
https://www.npmjs.com/
https://webpack.js.org/
https://parceljs.org/
https://babeljs.io/
https://blog.usejournal.com/creating-a-react-app-from-scratch-f3c693b84658


If you serve React from a CDN, we recommend to keep the crossorigin
attribute set:

We also recommend to verify that the CDN you are using sets the Access-
Control-Allow-Origin: * HTTP header:

Access-Control-Allow-Origin: *

This enables a better error handling experience in React 16 and later.

Release Channels

React relies on a thriving open source community to file bug reports, open
pull requests, and submit RFCs. To encourage feedback we sometimes
share special builds of React that include unreleased features.

This document will be most relevant to developers who work on
frameworks, libraries, or developer tooling. Developers who use React
primarily to build user-facing applications should not need to worry
about our prerelease channels.

Each of React’s release channels is designed for a distinct use case:

Latest is for stable, semver React releases. It’s what you get when you
install React from npm. This is the channel you’re already using today.

<script crossorigin src="..."></script>

https://developer.mozilla.org/en-US/docs/Web/HTML/CORS_settings_attributes
file:///C:/blog/2017/07/26/error-handling-in-react-16.html
https://github.com/reactjs/rfcs


Use this for all user-facing React applications.
Next tracks the main branch of the React source code repository. Think
of these as release candidates for the next minor semver release. Use
this for integration testing between React and third party projects.
Experimental includes experimental APIs and features that aren’t
available in the stable releases. These also track the main branch, but
with additional feature flags turned on. Use this to try out upcoming
features before they are released.

All releases are published to npm, but only Latest uses semantic versioning.
Prereleases (those in the Next and Experimental channels) have versions
generated from a hash of their contents and the commit date, e.g. 0.0.0-
68053d940-20210623 for Next and 0.0.0-experimental-68053d940-

20210623 for Experimental.

The only officially supported release channel for user-facing
applications is Latest. Next and Experimental releases are provided for
testing purposes only, and we provide no guarantees that behavior won’t
change between releases. They do not follow the semver protocol that we
use for releases from Latest.

By publishing prereleases to the same registry that we use for stable
releases, we are able to take advantage of the many tools that support the
npm workflow, like unpkg and CodeSandbox.

Latest Channel

Latest is the channel used for stable React releases. It corresponds to the 
latest tag on npm. It is the recommended channel for all React apps that
are shipped to real users.

If you’re not sure which channel you should use, it’s Latest. If you’re a
React developer, this is what you’re already using.

You can expect updates to Latest to be extremely stable. Versions follow the
semantic versioning scheme. Learn more about our commitment to stability
and incremental migration in our versioning policy.

https://unpkg.com/
https://codesandbox.io/


Next Channel

The Next channel is a prerelease channel that tracks the main branch of the
React repository. We use prereleases in the Next channel as release
candidates for the Latest channel. You can think of Next as a superset of
Latest that is updated more frequently.

The degree of change between the most recent Next release and the most
recent Latest release is approximately the same as you would find between
two minor semver releases. However, the Next channel does not conform
to semantic versioning. You should expect occasional breaking changes
between successive releases in the Next channel.

Do not use prereleases in user-facing applications.

Releases in Next are published with the next tag on npm. Versions are
generated from a hash of the build’s contents and the commit date,
e.g. 0.0.0-68053d940-20210623.

Using the Next Channel for Integration Testing

The Next channel is designed to support integration testing between React
and other projects.

All changes to React go through extensive internal testing before they are
released to the public. However, there are a myriad of environments and
configurations used throughout the React ecosystem, and it’s not possible
for us to test against every single one.

If you’re the author of a third party React framework, library, developer
tool, or similar infrastructure-type project, you can help us keep React
stable for your users and the entire React community by periodically
running your test suite against the most recent changes. If you’re interested,
follow these steps:

Set up a cron job using your preferred continuous integration platform.
Cron jobs are supported by both CircleCI and Travis CI.

https://circleci.com/docs/2.0/triggers/#scheduled-builds
https://docs.travis-ci.com/user/cron-jobs/


In the cron job, update your React packages to the most recent React
release in the Next channel, using next tag on npm. Using the npm cli:

npm update react@next react-dom@next

Or yarn:

yarn upgrade react@next react-dom@next

Run your test suite against the updated packages.

If everything passes, great! You can expect that your project will work
with the next minor React release.

If something breaks unexpectedly, please let us know by filing an
issue.

A project that uses this workflow is Next.js. (No pun intended! Seriously!)
You can refer to their CircleCI configuration as an example.

Experimental Channel

Like Next, the Experimental channel is a prerelease channel that tracks the
main branch of the React repository. Unlike Next, Experimental releases
include additional features and APIs that are not ready for wider release.

Usually, an update to Next is accompanied by a corresponding update to
Experimental. They are based on the same source revision, but are built
using a different set of feature flags.

Experimental releases may be significantly different than releases to Next
and Latest. Do not use Experimental releases in user-facing applications.
You should expect frequent breaking changes between releases in the
Experimental channel.

Releases in Experimental are published with the experimental tag on npm.
Versions are generated from a hash of the build’s contents and the commit
date, e.g. 0.0.0-experimental-68053d940-20210623.

https://github.com/facebook/react/issues
https://github.com/zeit/next.js/blob/c0a1c0f93966fe33edd93fb53e5fafb0dcd80a9e/.circleci/config.yml


What Goes Into an Experimental Release?

Experimental features are ones that are not ready to be released to the wider
public, and may change drastically before they are finalized. Some
experiments may never be finalized – the reason we have experiments is to
test the viability of proposed changes.

For example, if the Experimental channel had existed when we announced
Hooks, we would have released Hooks to the Experimental channel weeks
before they were available in Latest.

You may find it valuable to run integration tests against Experimental. This
is up to you. However, be advised that Experimental is even less stable than
Next. We do not guarantee any stability between Experimental releases.

How Can I Learn More About Experimental Features?

Experimental features may or may not be documented. Usually,
experiments aren’t documented until they are close to shipping in Next or
Latest.

If a feature is not documented, they may be accompanied by an RFC.

We will post to the React blog when we’re ready to announce new
experiments, but that doesn’t mean we will publicize every experiment.

You can always refer to our public GitHub repository’s history for a
comprehensive list of changes.

https://github.com/reactjs/rfcs
file:///C:/blog
https://github.com/facebook/react/commits/main


Main Concepts
Hello World

The smallest React example looks like this:

It displays a heading saying “Hello, world!” on the page.

Try it on CodePen

Click the link above to open an online editor. Feel free to make some changes,
and see how they affect the output. Most pages in this guide will have editable
examples like this one.

How to Read This Guide

In this guide, we will examine the building blocks of React apps: elements and
components. Once you master them, you can create complex apps from small
reusable pieces.

Tip

This guide is designed for people who prefer learning concepts step by
step. If you prefer to learn by doing, check out our practical tutorial. You
might find this guide and the tutorial complementary to each other.

This is the first chapter in a step-by-step guide about main React concepts. You
can find a list of all its chapters in the navigation sidebar. If you’re reading this
from a mobile device, you can access the navigation by pressing the button in
the bottom right corner of your screen.

Every chapter in this guide builds on the knowledge introduced in earlier
chapters. You can learn most of React by reading the “Main Concepts”

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<h1>Hello, world!</h1>);

https://codepen.io/gaearon/pen/rrpgNB?editors=1010
https://reactjs.org/tutorial/tutorial.html


guide chapters in the order they appear in the sidebar. For example,
“Introducing JSX” is the next chapter after this one.

Knowledge Level Assumptions

React is a JavaScript library, and so we’ll assume you have a basic
understanding of the JavaScript language. If you don’t feel very confident, we
recommend going through a JavaScript tutorial to check your knowledge
level and enable you to follow along this guide without getting lost. It might
take you between 30 minutes and an hour, but as a result you won’t have to feel
like you’re learning both React and JavaScript at the same time.

Note

This guide occasionally uses some newer JavaScript syntax in the
examples. If you haven’t worked with JavaScript in the last few years,
these three points should get you most of the way.

Let’s Get Started!

Keep scrolling down, and you’ll find the link to the next chapter of this guide
right before the website footer.

Introducing JSX

Consider this variable declaration:

This funny tag syntax is neither a string nor HTML.

It is called JSX, and it is a syntax extension to JavaScript. We recommend
using it with React to describe what the UI should look like. JSX may remind
you of a template language, but it comes with the full power of JavaScript.

JSX produces React “elements”. We will explore rendering them to the DOM
in the next section. Below, you can find the basics of JSX necessary to get you
started.

const element = <h1>Hello, world!</h1>;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://gist.github.com/gaearon/683e676101005de0add59e8bb345340c


Why JSX?

React embraces the fact that rendering logic is inherently coupled with other UI
logic: how events are handled, how the state changes over time, and how the
data is prepared for display.

Instead of artificially separating technologies by putting markup and logic in
separate files, React separates concerns with loosely coupled units called
“components” that contain both. We will come back to components in a further
section, but if you’re not yet comfortable putting markup in JS, this talk might
convince you otherwise.

React doesn’t require using JSX, but most people find it helpful as a visual aid
when working with UI inside the JavaScript code. It also allows React to show
more useful error and warning messages.

With that out of the way, let’s get started!

Embedding Expressions in JSX

In the example below, we declare a variable called name and then use it inside
JSX by wrapping it in curly braces:

const name = 'Josh Perez'; 
const element = <h1>Hello, {name}</h1>;

You can put any valid JavaScript expression inside the curly braces in JSX. For
example, 2 + 2, user.firstName, or formatName(user) are all valid
JavaScript expressions.

In the example below, we embed the result of calling a JavaScript function, 
formatName(user), into an <h1> element.

function formatName(user) { 
  return user.firstName + ' ' + user.lastName; 
} 
 
const user = { 
  firstName: 'Harper', 
  lastName: 'Perez' 
}; 
 

https://en.wikipedia.org/wiki/Separation_of_concerns
https://www.youtube.com/watch?v=x7cQ3mrcKaY
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators#Expressions


const element = ( 
  <h1> 
    Hello, {formatName(user)}! 
  </h1> 
);

Try it on CodePen

We split JSX over multiple lines for readability. While it isn’t required, when
doing this, we also recommend wrapping it in parentheses to avoid the pitfalls
of automatic semicolon insertion.

JSX is an Expression Too

After compilation, JSX expressions become regular JavaScript function calls
and evaluate to JavaScript objects.

This means that you can use JSX inside of if statements and for loops, assign
it to variables, accept it as arguments, and return it from functions:

function getGreeting(user) { 
  if (user) { 
    return <h1>Hello, {formatName(user)}!</h1>; 
  } 
  return <h1>Hello, Stranger.</h1>; 
}

Specifying Attributes with JSX

You may use quotes to specify string literals as attributes:

You may also use curly braces to embed a JavaScript expression in an attribute:

Don’t put quotes around curly braces when embedding a JavaScript expression
in an attribute. You should either use quotes (for string values) or curly braces
(for expressions), but not both in the same attribute.

Warning:

const element = <a href="https://www.reactjs.org"> link </a>;

const element = <img src={user.avatarUrl}></img>;

https://codepen.io/gaearon/pen/PGEjdG?editors=1010
https://stackoverflow.com/q/2846283


Since JSX is closer to JavaScript than to HTML, React DOM uses 
camelCase property naming convention instead of HTML attribute names.

For example, class becomes className in JSX, and tabindex becomes 
tabIndex.

Specifying Children with JSX

If a tag is empty, you may close it immediately with />, like XML:

JSX tags may contain children:

JSX Prevents Injection Attacks

It is safe to embed user input in JSX:

By default, React DOM escapes any values embedded in JSX before rendering
them. Thus it ensures that you can never inject anything that’s not explicitly
written in your application. Everything is converted to a string before being
rendered. This helps prevent XSS (cross-site-scripting) attacks.

JSX Represents Objects

Babel compiles JSX down to React.createElement() calls.

These two examples are identical:

const element = <img src={user.avatarUrl} />;

const element = (
 <div>
   <h1>Hello!</h1>
   <h2>Good to see you here.</h2>
 </div>
);

const title = response.potentiallyMaliciousInput;
// This is safe:
const element = <h1>{title}</h1>;

https://developer.mozilla.org/en-US/docs/Web/API/Element/className
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/tabIndex
https://stackoverflow.com/questions/7381974/which-characters-need-to-be-escaped-on-html
https://en.wikipedia.org/wiki/Cross-site_scripting


React.createElement() performs a few checks to help you write bug-free
code but essentially it creates an object like this:

These objects are called “React elements”. You can think of them as
descriptions of what you want to see on the screen. React reads these objects
and uses them to construct the DOM and keep it up to date.

We will explore rendering React elements to the DOM in the next section.

Tip:

We recommend using the “Babel” language definition for your editor of
choice so that both ES6 and JSX code is properly highlighted.

Rendering Elements

Elements are the smallest building blocks of React apps.

An element describes what you want to see on the screen:

const element = (
 <h1 className="greeting">
   Hello, world!
 </h1>
);

const element = React.createElement(
 'h1',
 {className: 'greeting'},
 'Hello, world!'
);

// Note: this structure is simplified
const element = {
 type: 'h1',
 props: {
   className: 'greeting',
   children: 'Hello, world!'
 }
};

const element = <h1>Hello, world</h1>;

https://babeljs.io/docs/en/next/editors


Unlike browser DOM elements, React elements are plain objects, and are
cheap to create. React DOM takes care of updating the DOM to match the
React elements.

Note:

One might confuse elements with a more widely known concept of
“components”. We will introduce components in the next section.
Elements are what components are “made of”, and we encourage you to
read this section before jumping ahead.

Rendering an Element into the DOM

Let’s say there is a <div> somewhere in your HTML file:

We call this a “root” DOM node because everything inside it will be managed
by React DOM.

Applications built with just React usually have a single root DOM node. If you
are integrating React into an existing app, you may have as many isolated root
DOM nodes as you like.

To render a React element, first pass the DOM element to 
ReactDOM.createRoot(), then pass the React element to root.render():

embed:rendering-elements/render-an-element.js

Try it on CodePen

It displays “Hello, world” on the page.

Updating the Rendered Element

React elements are immutable. Once you create an element, you can’t change
its children or attributes. An element is like a single frame in a movie: it
represents the UI at a certain point in time.

<div id="root"></div>

https://codepen.io/gaearon/pen/ZpvBNJ?editors=1010
https://en.wikipedia.org/wiki/Immutable_object


With our knowledge so far, the only way to update the UI is to create a new
element, and pass it to root.render().

Consider this ticking clock example:

embed:rendering-elements/update-rendered-element.js

Try it on CodePen

It calls root.render() every second from a setInterval() callback.

Note:

In practice, most React apps only call root.render() once. In the next
sections we will learn how such code gets encapsulated into stateful
components.

We recommend that you don’t skip topics because they build on each
other.

React Only Updates What’s Necessary

React DOM compares the element and its children to the previous one, and
only applies the DOM updates necessary to bring the DOM to the desired state.

You can verify by inspecting the last example with the browser tools:

https://codepen.io/gaearon/pen/gwoJZk?editors=1010
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setInterval
https://codepen.io/gaearon/pen/gwoJZk?editors=1010


DOM inspector showing granular updates

Even though we create an element describing the whole UI tree on every tick,
only the text node whose contents have changed gets updated by React DOM.

In our experience, thinking about how the UI should look at any given moment,
rather than how to change it over time, eliminates a whole class of bugs.

Components and Props

Components let you split the UI into independent, reusable pieces, and think
about each piece in isolation. This page provides an introduction to the idea of
components. You can find a detailed component API reference here.

Conceptually, components are like JavaScript functions. They accept arbitrary
inputs (called “props”) and return React elements describing what should
appear on the screen.



Function and Class Components

The simplest way to define a component is to write a JavaScript function:

This function is a valid React component because it accepts a single “props”
(which stands for properties) object argument with data and returns a React
element. We call such components “function components” because they are
literally JavaScript functions.

You can also use an ES6 class to define a component:

The above two components are equivalent from React’s point of view.

Function and Class components both have some additional features that we will
discuss in the next sections.

Rendering a Component

Previously, we only encountered React elements that represent DOM tags:

However, elements can also represent user-defined components:

When React sees an element representing a user-defined component, it passes
JSX attributes and children to this component as a single object. We call this
object “props”.

For example, this code renders “Hello, Sara” on the page:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

class Welcome extends React.Component {
 render() {
   return <h1>Hello, {this.props.name}</h1>;
 }
}

const element = <div />;

const element = <Welcome name="Sara" />;

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes


function Welcome(props) { 
  return <h1>Hello, {props.name}</h1>; 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root')); 
const element = <Welcome name="Sara" />; 
root.render(element);

Try it on CodePen

Let’s recap what happens in this example:

1. We call root.render() with the <Welcome name="Sara" /> element.
2. React calls the Welcome component with {name: 'Sara'} as the props.
3. Our Welcome component returns a <h1>Hello, Sara</h1> element as the

result.
4. React DOM efficiently updates the DOM to match <h1>Hello, 

Sara</h1>.

Note: Always start component names with a capital letter.

React treats components starting with lowercase letters as DOM tags. For
example, <div /> represents an HTML div tag, but <Welcome />

represents a component and requires Welcome to be in scope.

To learn more about the reasoning behind this convention, please read JSX
In Depth.

Composing Components

Components can refer to other components in their output. This lets us use the
same component abstraction for any level of detail. A button, a form, a dialog,
a screen: in React apps, all those are commonly expressed as components.

For example, we can create an App component that renders Welcome many
times:

function Welcome(props) { 
  return <h1>Hello, {props.name}</h1>; 
} 
 
function App() { 

https://codepen.io/gaearon/pen/YGYmEG?editors=1010


  return ( 
    <div> 
      <Welcome name="Sara" /> 
      <Welcome name="Cahal" /> 
      <Welcome name="Edite" /> 
    </div> 
  ); 
}

Try it on CodePen

Typically, new React apps have a single App component at the very top.
However, if you integrate React into an existing app, you might start bottom-up
with a small component like Button and gradually work your way to the top of
the view hierarchy.

Extracting Components

Don’t be afraid to split components into smaller components.

For example, consider this Comment component:

function Comment(props) {
 return (
   <div className="Comment">
     <div className="UserInfo">
       <img className="Avatar"
         src={props.author.avatarUrl}
         alt={props.author.name}
       />
       <div className="UserInfo-name">
         {props.author.name}
       </div>
     </div>
     <div className="Comment-text">
       {props.text}
     </div>
     <div className="Comment-date">
       {formatDate(props.date)}
     </div>
   </div>
 );
}

https://codepen.io/gaearon/pen/KgQKPr?editors=1010


Try it on CodePen

It accepts author (an object), text (a string), and date (a date) as props, and
describes a comment on a social media website.

This component can be tricky to change because of all the nesting, and it is also
hard to reuse individual parts of it. Let’s extract a few components from it.

First, we will extract Avatar:

function Avatar(props) { 
  return ( 
    <img className="Avatar" 
      src={props.user.avatarUrl} 
      alt={props.user.name} 
    /> 
  ); 
}

The Avatar doesn’t need to know that it is being rendered inside a Comment.
This is why we have given its prop a more generic name: user rather than 
author.

We recommend naming props from the component’s own point of view rather
than the context in which it is being used.

We can now simplify Comment a tiny bit:

function Comment(props) { 
  return ( 
    <div className="Comment"> 
      <div className="UserInfo"> 
        <Avatar user={props.author} /> 
        <div className="UserInfo-name"> 
          {props.author.name} 
        </div> 
      </div> 
      <div className="Comment-text"> 
        {props.text} 
      </div> 
      <div className="Comment-date"> 
        {formatDate(props.date)} 
      </div> 
    </div> 

https://codepen.io/gaearon/pen/VKQwEo?editors=1010


  ); 
}

Next, we will extract a UserInfo component that renders an Avatar next to the
user’s name:

function UserInfo(props) { 
  return ( 
    <div className="UserInfo"> 
      <Avatar user={props.user} /> 
      <div className="UserInfo-name"> 
        {props.user.name} 
      </div> 
    </div> 
  ); 
}

This lets us simplify Comment even further:

function Comment(props) { 
  return ( 
    <div className="Comment"> 
      <UserInfo user={props.author} /> 
      <div className="Comment-text"> 
        {props.text} 
      </div> 
      <div className="Comment-date"> 
        {formatDate(props.date)} 
      </div> 
    </div> 
  ); 
}

Try it on CodePen

Extracting components might seem like grunt work at first, but having a palette
of reusable components pays off in larger apps. A good rule of thumb is that if
a part of your UI is used several times (Button, Panel, Avatar), or is complex
enough on its own (App, FeedStory, Comment), it is a good candidate to be
extracted to a separate component.

Props are Read-Only

Whether you declare a component as a function or a class, it must never modify
its own props. Consider this sum function:

https://codepen.io/gaearon/pen/rrJNJY?editors=1010


Such functions are called “pure” because they do not attempt to change their
inputs, and always return the same result for the same inputs.

In contrast, this function is impure because it changes its own input:

React is pretty flexible but it has a single strict rule:

All React components must act like pure functions with respect to their
props.

Of course, application UIs are dynamic and change over time. In the next
section, we will introduce a new concept of “state”. State allows React
components to change their output over time in response to user actions,
network responses, and anything else, without violating this rule.

State and Lifecycle

This page introduces the concept of state and lifecycle in a React component.
You can find a detailed component API reference here.

Consider the ticking clock example from one of the previous sections. In
Rendering Elements, we have only learned one way to update the UI. We call 
root.render() to change the rendered output:

const root = ReactDOM.createRoot(document.getElementById('root')); 
   
function tick() { 
  const element = ( 
    <div> 
      <h1>Hello, world!</h1> 
      <h2>It is {new Date().toLocaleTimeString()}.</h2> 
    </div> 
  ); 
  root.render(element); 

function sum(a, b) {
 return a + b;
}

function withdraw(account, amount) {
 account.total -= amount;
}

https://en.wikipedia.org/wiki/Pure_function


} 
 
setInterval(tick, 1000);

Try it on CodePen

In this section, we will learn how to make the Clock component truly reusable
and encapsulated. It will set up its own timer and update itself every second.

We can start by encapsulating how the clock looks:

const root = ReactDOM.createRoot(document.getElementById('root')); 
 
function Clock(props) { 
  return ( 
    <div> 
      <h1>Hello, world!</h1> 
      <h2>It is {props.date.toLocaleTimeString()}.</h2> 
    </div> 
  ); 
} 
 
function tick() { 
  root.render(<Clock date={new Date()} />); 
} 
 
setInterval(tick, 1000);

Try it on CodePen

However, it misses a crucial requirement: the fact that the Clock sets up a timer
and updates the UI every second should be an implementation detail of the 
Clock.

Ideally we want to write this once and have the Clock update itself:

root.render(<Clock />);

To implement this, we need to add “state” to the Clock component.

State is similar to props, but it is private and fully controlled by the component.

Converting a Function to a Class

https://codepen.io/gaearon/pen/gwoJZk?editors=0010
https://codepen.io/gaearon/pen/dpdoYR?editors=0010


You can convert a function component like Clock to a class in five steps:

1. Create an ES6 class, with the same name, that extends React.Component.

2. Add a single empty method to it called render().

3. Move the body of the function into the render() method.

4. Replace props with this.props in the render() body.

5. Delete the remaining empty function declaration.

Try it on CodePen

Clock is now defined as a class rather than a function.

The render method will be called each time an update happens, but as long as
we render <Clock /> into the same DOM node, only a single instance of the 
Clock class will be used. This lets us use additional features such as local state
and lifecycle methods.

Adding Local State to a Class

We will move the date from props to state in three steps:

1. Replace this.props.date with this.state.date in the render()

method:

class Clock extends React.Component { 
  render() { 
    return ( 

class Clock extends React.Component {
 render() {
   return (
     <div>
       <h1>Hello, world!</h1>
       <h2>It is {this.props.date.toLocaleTimeString()}.</h2>
     </div>
   );
 }
}

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://codepen.io/gaearon/pen/zKRGpo?editors=0010


      <div> 
        <h1>Hello, world!</h1> 
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2> 
      </div> 
    ); 
  } 
}

2. Add a class constructor that assigns the initial this.state:

class Clock extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {date: new Date()}; 
  } 
 
  render() { 
    return ( 
      <div> 
        <h1>Hello, world!</h1> 
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2> 
      </div> 
    ); 
  } 
}

Note how we pass props to the base constructor:

  constructor(props) { 
    super(props); 
    this.state = {date: new Date()}; 
  }

Class components should always call the base constructor with props.

3. Remove the date prop from the <Clock /> element:

root.render(<Clock />);

We will later add the timer code back to the component itself.

The result looks like this:

class Clock extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {date: new Date()}; 

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes#Constructor


  } 
 
  render() { 
    return ( 
      <div> 
        <h1>Hello, world!</h1> 
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2> 
      </div> 
    ); 
  } 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Clock />);

Try it on CodePen

Next, we’ll make the Clock set up its own timer and update itself every second.

Adding Lifecycle Methods to a Class

In applications with many components, it’s very important to free up resources
taken by the components when they are destroyed.

We want to set up a timer whenever the Clock is rendered to the DOM for the
first time. This is called “mounting” in React.

We also want to clear that timer whenever the DOM produced by the Clock is
removed. This is called “unmounting” in React.

We can declare special methods on the component class to run some code when
a component mounts and unmounts:

class Clock extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {date: new Date()}; 
  } 
 
  componentDidMount() { 
 
  } 
 
  componentWillUnmount() { 
 

https://codepen.io/gaearon/pen/KgQpJd?editors=0010
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/setInterval
https://developer.mozilla.org/en-US/docs/Web/API/WindowTimers/clearInterval


  } 
 
  render() { 
    return ( 
      <div> 
        <h1>Hello, world!</h1> 
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2> 
      </div> 
    ); 
  } 
}

These methods are called “lifecycle methods”.

The componentDidMount() method runs after the component output has been
rendered to the DOM. This is a good place to set up a timer:

  componentDidMount() { 
    this.timerID = setInterval( 
      () => this.tick(), 
      1000 
    ); 
  }

Note how we save the timer ID right on this (this.timerID).

While this.props is set up by React itself and this.state has a special
meaning, you are free to add additional fields to the class manually if you need
to store something that doesn’t participate in the data flow (like a timer ID).

We will tear down the timer in the componentWillUnmount() lifecycle method:

  componentWillUnmount() { 
    clearInterval(this.timerID); 
  }

Finally, we will implement a method called tick() that the Clock component
will run every second.

It will use this.setState() to schedule updates to the component local state:

class Clock extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {date: new Date()}; 



  } 
 
  componentDidMount() { 
    this.timerID = setInterval( 
      () => this.tick(), 
      1000 
    ); 
  } 
 
  componentWillUnmount() { 
    clearInterval(this.timerID); 
  } 
 
  tick() { 
    this.setState({ 
      date: new Date() 
    }); 
  } 
 
  render() { 
    return ( 
      <div> 
        <h1>Hello, world!</h1> 
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2> 
      </div> 
    ); 
  } 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Clock />);

Try it on CodePen

Now the clock ticks every second.

Let’s quickly recap what’s going on and the order in which the methods are
called:

1. When <Clock /> is passed to root.render(), React calls the constructor
of the Clock component. Since Clock needs to display the current time, it
initializes this.state with an object including the current time. We will
later update this state.

2. React then calls the Clock component’s render() method. This is how
React learns what should be displayed on the screen. React then updates

https://codepen.io/gaearon/pen/amqdNA?editors=0010


the DOM to match the Clock’s render output.

3. When the Clock output is inserted in the DOM, React calls the 
componentDidMount() lifecycle method. Inside it, the Clock component
asks the browser to set up a timer to call the component’s tick() method
once a second.

4. Every second the browser calls the tick() method. Inside it, the Clock
component schedules a UI update by calling setState() with an object
containing the current time. Thanks to the setState() call, React knows
the state has changed, and calls the render() method again to learn what
should be on the screen. This time, this.state.date in the render()
method will be different, and so the render output will include the updated
time. React updates the DOM accordingly.

5. If the Clock component is ever removed from the DOM, React calls the 
componentWillUnmount() lifecycle method so the timer is stopped.

Using State Correctly

There are three things you should know about setState().

Do Not Modify State Directly

For example, this will not re-render a component:

Instead, use setState():

The only place where you can assign this.state is the constructor.

State Updates May Be Asynchronous

// Wrong
this.state.comment = 'Hello';

// Correct
this.setState({comment: 'Hello'});



React may batch multiple setState() calls into a single update for
performance.

Because this.props and this.state may be updated asynchronously, you
should not rely on their values for calculating the next state.

For example, this code may fail to update the counter:

To fix it, use a second form of setState() that accepts a function rather than
an object. That function will receive the previous state as the first argument,
and the props at the time the update is applied as the second argument:

We used an arrow function above, but it also works with regular functions:

State Updates are Merged

When you call setState(), React merges the object you provide into the
current state.

For example, your state may contain several independent variables:

  constructor(props) { 
    super(props); 
    this.state = { 
      posts: [], 

// Wrong
this.setState({
 counter: this.state.counter + this.props.increment,
});

// Correct
this.setState((state, props) => ({
 counter: state.counter + props.increment
}));

// Correct
this.setState(function(state, props) {
 return {
   counter: state.counter + props.increment
 };
});

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions


      comments: [] 
    }; 
  }

Then you can update them independently with separate setState() calls:

  componentDidMount() { 
    fetchPosts().then(response => { 
      this.setState({ 
        posts: response.posts 
      }); 
    }); 
 
    fetchComments().then(response => { 
      this.setState({ 
        comments: response.comments 
      }); 
    }); 
  }

The merging is shallow, so this.setState({comments}) leaves 
this.state.posts intact, but completely replaces this.state.comments.

The Data Flows Down

Neither parent nor child components can know if a certain component is
stateful or stateless, and they shouldn’t care whether it is defined as a function
or a class.

This is why state is often called local or encapsulated. It is not accessible to any
component other than the one that owns and sets it.

A component may choose to pass its state down as props to its child
components:

The FormattedDate component would receive the date in its props and
wouldn’t know whether it came from the Clock’s state, from the Clock’s props,
or was typed by hand:

<FormattedDate date={this.state.date} />

function FormattedDate(props) {
 return <h2>It is {props.date.toLocaleTimeString()}.</h2>;
}



Try it on CodePen

This is commonly called a “top-down” or “unidirectional” data flow. Any state
is always owned by some specific component, and any data or UI derived from
that state can only affect components “below” them in the tree.

If you imagine a component tree as a waterfall of props, each component’s state
is like an additional water source that joins it at an arbitrary point but also
flows down.

To show that all components are truly isolated, we can create an App
component that renders three <Clock>s:

function App() { 
  return ( 
    <div> 
      <Clock /> 
      <Clock /> 
      <Clock /> 
    </div> 
  ); 
}

Try it on CodePen

Each Clock sets up its own timer and updates independently.

In React apps, whether a component is stateful or stateless is considered an
implementation detail of the component that may change over time. You can
use stateless components inside stateful components, and vice versa.

Handling Events

Handling events with React elements is very similar to handling events on
DOM elements. There are some syntax differences:

React events are named using camelCase, rather than lowercase.
With JSX you pass a function as the event handler, rather than a string.

For example, the HTML:

https://codepen.io/gaearon/pen/zKRqNB?editors=0010
https://codepen.io/gaearon/pen/vXdGmd?editors=0010


is slightly different in React:

<button onClick={activateLasers}> 
  Activate Lasers 
</button>

Another difference is that you cannot return false to prevent default behavior
in React. You must call preventDefault explicitly. For example, with plain
HTML, to prevent the default form behavior of submitting, you can write:

In React, this could instead be:

function Form() { 
  function handleSubmit(e) { 
    e.preventDefault(); 
    console.log('You clicked submit.'); 
  } 
 
  return ( 
    <form onSubmit={handleSubmit}> 
      <button type="submit">Submit</button> 
    </form> 
  ); 
}

Here, e is a synthetic event. React defines these synthetic events according to
the W3C spec, so you don’t need to worry about cross-browser compatibility.
React events do not work exactly the same as native events. See the 
SyntheticEvent reference guide to learn more.

When using React, you generally don’t need to call addEventListener to add
listeners to a DOM element after it is created. Instead, just provide a listener
when the element is initially rendered.

When you define a component using an ES6 class, a common pattern is for an
event handler to be a method on the class. For example, this Toggle component

<button onclick="activateLasers()">
 Activate Lasers
</button>

<form onsubmit="console.log('You clicked submit.'); return false">
 <button type="submit">Submit</button>
</form>

https://www.w3.org/TR/DOM-Level-3-Events/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes


renders a button that lets the user toggle between “ON” and “OFF” states:

class Toggle extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {isToggleOn: true}; 
 
    // This binding is necessary to make `this` work in the 
callback 
    this.handleClick = this.handleClick.bind(this); 
  } 
 
  handleClick() { 
    this.setState(prevState => ({ 
      isToggleOn: !prevState.isToggleOn 
    })); 
  } 
 
  render() { 
    return ( 
      <button onClick={this.handleClick}> 
        {this.state.isToggleOn ? 'ON' : 'OFF'} 
      </button> 
    ); 
  } 
}

Try it on CodePen

You have to be careful about the meaning of this in JSX callbacks. In
JavaScript, class methods are not bound by default. If you forget to bind 
this.handleClick and pass it to onClick, this will be undefined when the
function is actually called.

This is not React-specific behavior; it is a part of how functions work in
JavaScript. Generally, if you refer to a method without () after it, such as 
onClick={this.handleClick}, you should bind that method.

If calling bind annoys you, there are two ways you can get around this. You
can use public class fields syntax to correctly bind callbacks:

class LoggingButton extends React.Component { 
  // This syntax ensures `this` is bound within handleClick. 
  handleClick = () => { 
    console.log('this is:', this); 
  }; 

https://codepen.io/gaearon/pen/xEmzGg?editors=0010
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://www.smashingmagazine.com/2014/01/understanding-javascript-function-prototype-bind/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Public_class_fields#public_instance_fields


 
  render() { 
    return ( 
      <button onClick={this.handleClick}> 
        Click me 
      </button> 
    ); 
  } 
}

This syntax is enabled by default in Create React App.

If you aren’t using class fields syntax, you can use an arrow function in the
callback:

class LoggingButton extends React.Component { 
  handleClick() { 
    console.log('this is:', this); 
  } 
 
  render() { 
    // This syntax ensures `this` is bound within handleClick 
    return ( 
      <button onClick={() => this.handleClick()}> 
        Click me 
      </button> 
    ); 
  } 
}

The problem with this syntax is that a different callback is created each time
the LoggingButton renders. In most cases, this is fine. However, if this
callback is passed as a prop to lower components, those components might do
an extra re-rendering. We generally recommend binding in the constructor or
using the class fields syntax, to avoid this sort of performance problem.

Passing Arguments to Event Handlers

Inside a loop, it is common to want to pass an extra parameter to an event
handler. For example, if id is the row ID, either of the following would work:

<button onClick={(e) => this.deleteRow(id, e)}>Delete Row</button>
<button onClick={this.deleteRow.bind(this, id)}>Delete Row</button>

https://github.com/facebookincubator/create-react-app
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Arrow_functions


The above two lines are equivalent, and use arrow functions and 
Function.prototype.bind respectively.

In both cases, the e argument representing the React event will be passed as a
second argument after the ID. With an arrow function, we have to pass it
explicitly, but with bind any further arguments are automatically forwarded.

Conditional Rendering

In React, you can create distinct components that encapsulate behavior you
need. Then, you can render only some of them, depending on the state of your
application.

Conditional rendering in React works the same way conditions work in
JavaScript. Use JavaScript operators like if or the conditional operator to
create elements representing the current state, and let React update the UI to
match them.

Consider these two components:

We’ll create a Greeting component that displays either of these components
depending on whether a user is logged in:

function Greeting(props) { 
  const isLoggedIn = props.isLoggedIn; 
  if (isLoggedIn) { 
    return <UserGreeting />; 
  } 
  return <GuestGreeting />; 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root'));  
// Try changing to isLoggedIn={true}: 
root.render(<Greeting isLoggedIn={false} />);

function UserGreeting(props) {
 return <h1>Welcome back!</h1>;
}

function GuestGreeting(props) {
 return <h1>Please sign up.</h1>;
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_objects/Function/bind
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/if...else
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Conditional_Operator


Try it on CodePen

This example renders a different greeting depending on the value of 
isLoggedIn prop.

Element Variables

You can use variables to store elements. This can help you conditionally render
a part of the component while the rest of the output doesn’t change.

Consider these two new components representing Logout and Login buttons:

In the example below, we will create a stateful component called 
LoginControl.

It will render either <LoginButton /> or <LogoutButton /> depending on its
current state. It will also render a <Greeting /> from the previous example:

class LoginControl extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleLoginClick = this.handleLoginClick.bind(this); 
    this.handleLogoutClick = this.handleLogoutClick.bind(this); 
    this.state = {isLoggedIn: false}; 
  } 
 
  handleLoginClick() { 

function LoginButton(props) {
 return (
   <button onClick={props.onClick}>
     Login
   </button>
 );
}

function LogoutButton(props) {
 return (
   <button onClick={props.onClick}>
     Logout
   </button>
 );
}

https://codepen.io/gaearon/pen/ZpVxNq?editors=0011


    this.setState({isLoggedIn: true}); 
  } 
 
  handleLogoutClick() { 
    this.setState({isLoggedIn: false}); 
  } 
 
  render() { 
    const isLoggedIn = this.state.isLoggedIn; 
    let button; 
 
    if (isLoggedIn) { 
      button = <LogoutButton onClick={this.handleLogoutClick} />; 
    } else { 
      button = <LoginButton onClick={this.handleLoginClick} />; 
    } 
 
    return ( 
      <div> 
        <Greeting isLoggedIn={isLoggedIn} /> 
        {button} 
      </div> 
    ); 
  } 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root'));  
root.render(<LoginControl />);

Try it on CodePen

While declaring a variable and using an if statement is a fine way to
conditionally render a component, sometimes you might want to use a shorter
syntax. There are a few ways to inline conditions in JSX, explained below.

Inline If with Logical && Operator

You may embed expressions in JSX by wrapping them in curly braces. This
includes the JavaScript logical && operator. It can be handy for conditionally
including an element:

function Mailbox(props) { 
  const unreadMessages = props.unreadMessages; 
  return ( 
    <div> 
      <h1>Hello!</h1> 

https://codepen.io/gaearon/pen/QKzAgB?editors=0010


      {unreadMessages.length > 0 && 
        <h2> 
          You have {unreadMessages.length} unread messages. 
        </h2> 
      } 
    </div> 
  ); 
} 
 
const messages = ['React', 'Re: React', 'Re:Re: React']; 
 
const root = ReactDOM.createRoot(document.getElementById('root'));  
root.render(<Mailbox unreadMessages={messages} />);

Try it on CodePen

It works because in JavaScript, true && expression always evaluates to 
expression, and false && expression always evaluates to false.

Therefore, if the condition is true, the element right after && will appear in the
output. If it is false, React will ignore and skip it.

Note that returning a falsy expression will still cause the element after && to be
skipped but will return the falsy expression. In the example below, 
<div>0</div> will be returned by the render method.

render() { 
  const count = 0; 
  return ( 
    <div> 
      {count && <h1>Messages: {count}</h1>} 
    </div> 
  ); 
}

Inline If-Else with Conditional Operator

Another method for conditionally rendering elements inline is to use the
JavaScript conditional operator condition ? true : false.

In the example below, we use it to conditionally render a small block of text.

render() { 
  const isLoggedIn = this.state.isLoggedIn; 
  return ( 

https://codepen.io/gaearon/pen/ozJddz?editors=0010
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Conditional_Operator


    <div> 
      The user is <b>{isLoggedIn ? 'currently' : 'not'}</b> logged 
in. 
    </div> 
  ); 
}

It can also be used for larger expressions although it is less obvious what’s
going on:

render() { 
  const isLoggedIn = this.state.isLoggedIn; 
  return ( 
    <div> 
      {isLoggedIn 
        ? <LogoutButton onClick={this.handleLogoutClick} /> 
        : <LoginButton onClick={this.handleLoginClick} /> 
      } 
    </div> 
  ); 
}

Just like in JavaScript, it is up to you to choose an appropriate style based on
what you and your team consider more readable. Also remember that whenever
conditions become too complex, it might be a good time to extract a
component.

Preventing Component from Rendering

In rare cases you might want a component to hide itself even though it was
rendered by another component. To do this return null instead of its render
output.

In the example below, the <WarningBanner /> is rendered depending on the
value of the prop called warn. If the value of the prop is false, then the
component does not render:

function WarningBanner(props) { 
  if (!props.warn) { 
    return null; 
  } 
 
  return ( 
    <div className="warning"> 



      Warning! 
    </div> 
  ); 
} 
 
class Page extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {showWarning: true}; 
    this.handleToggleClick = this.handleToggleClick.bind(this); 
  } 
 
  handleToggleClick() { 
    this.setState(state => ({ 
      showWarning: !state.showWarning 
    })); 
  } 
 
  render() { 
    return ( 
      <div> 
        <WarningBanner warn={this.state.showWarning} /> 
        <button onClick={this.handleToggleClick}> 
          {this.state.showWarning ? 'Hide' : 'Show'} 
        </button> 
      </div> 
    ); 
  } 
} 
 
const root = ReactDOM.createRoot(document.getElementById('root'));  
root.render(<Page />);

Try it on CodePen

Returning null from a component’s render method does not affect the firing
of the component’s lifecycle methods. For instance componentDidUpdate will
still be called.

Lists and Keys

First, let’s review how you transform lists in JavaScript.

Given the code below, we use the map() function to take an array of numbers
and double their values. We assign the new array returned by map() to the
variable doubled and log it:

https://codepen.io/gaearon/pen/Xjoqwm?editors=0010
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map


const numbers = [1, 2, 3, 4, 5]; 
const doubled = numbers.map((number) => number * 2); 
console.log(doubled);

This code logs [2, 4, 6, 8, 10] to the console.

In React, transforming arrays into lists of elements is nearly identical.

Rendering Multiple Components

You can build collections of elements and include them in JSX using curly
braces {}.

Below, we loop through the numbers array using the JavaScript map() function.
We return a <li> element for each item. Finally, we assign the resulting array
of elements to listItems:

const numbers = [1, 2, 3, 4, 5]; 
const listItems = numbers.map((number) => 
  <li>{number}</li> 
);

Then, we can include the entire listItems array inside a <ul> element:

<ul>{listItems}</ul>

Try it on CodePen

This code displays a bullet list of numbers between 1 and 5.

Basic List Component

Usually you would render lists inside a component.

We can refactor the previous example into a component that accepts an array of
numbers and outputs a list of elements.

function NumberList(props) { 
  const numbers = props.numbers; 
  const listItems = numbers.map((number) => 
    <li>{number}</li> 
  ); 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://codepen.io/gaearon/pen/GjPyQr?editors=0011


  return ( 
    <ul>{listItems}</ul> 
  ); 
} 
 
const numbers = [1, 2, 3, 4, 5]; 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<NumberList numbers={numbers} />);

When you run this code, you’ll be given a warning that a key should be
provided for list items. A “key” is a special string attribute you need to include
when creating lists of elements. We’ll discuss why it’s important in the next
section.

Let’s assign a key to our list items inside numbers.map() and fix the missing
key issue.

function NumberList(props) { 
  const numbers = props.numbers; 
  const listItems = numbers.map((number) => 
    <li key={number.toString()}> 
      {number} 
    </li> 
  ); 
  return ( 
    <ul>{listItems}</ul> 
  ); 
}

Try it on CodePen

Keys

Keys help React identify which items have changed, are added, or are removed.
Keys should be given to the elements inside the array to give the elements a
stable identity:

const numbers = [1, 2, 3, 4, 5]; 
const listItems = numbers.map((number) => 
  <li key={number.toString()}> 
    {number} 
  </li> 
);

https://codepen.io/gaearon/pen/jrXYRR?editors=0011


The best way to pick a key is to use a string that uniquely identifies a list item
among its siblings. Most often you would use IDs from your data as keys:

const todoItems = todos.map((todo) => 
  <li key={todo.id}> 
    {todo.text} 
  </li> 
);

When you don’t have stable IDs for rendered items, you may use the item
index as a key as a last resort:

const todoItems = todos.map((todo, index) => 
  // Only do this if items have no stable IDs 
  <li key={index}> 
    {todo.text} 
  </li> 
);

We don’t recommend using indexes for keys if the order of items may change.
This can negatively impact performance and may cause issues with component
state. Check out Robin Pokorny’s article for an in-depth explanation on the
negative impacts of using an index as a key. If you choose not to assign an
explicit key to list items then React will default to using indexes as keys.

Here is an in-depth explanation about why keys are necessary if you’re
interested in learning more.

Extracting Components with Keys

Keys only make sense in the context of the surrounding array.

For example, if you extract a ListItem component, you should keep the key on
the <ListItem /> elements in the array rather than on the <li> element in the 
ListItem itself.

Example: Incorrect Key Usage

function ListItem(props) { 
  const value = props.value; 
  return ( 
    // Wrong! There is no need to specify the key here: 
    <li key={value.toString()}> 

https://robinpokorny.com/blog/index-as-a-key-is-an-anti-pattern/


      {value} 
    </li> 
  ); 
} 
 
function NumberList(props) { 
  const numbers = props.numbers; 
  const listItems = numbers.map((number) => 
    // Wrong! The key should have been specified here: 
    <ListItem value={number} /> 
  ); 
  return ( 
    <ul> 
      {listItems} 
    </ul> 
  ); 
}

Example: Correct Key Usage

function ListItem(props) { 
  // Correct! There is no need to specify the key here: 
  return <li>{props.value}</li>; 
} 
 
function NumberList(props) { 
  const numbers = props.numbers; 
  const listItems = numbers.map((number) => 
    // Correct! Key should be specified inside the array. 
    <ListItem key={number.toString()} value={number} /> 
  ); 
  return ( 
    <ul> 
      {listItems} 
    </ul> 
  ); 
}

Try it on CodePen

A good rule of thumb is that elements inside the map() call need keys.

Keys Must Only Be Unique Among Siblings

Keys used within arrays should be unique among their siblings. However, they
don’t need to be globally unique. We can use the same keys when we produce

https://codepen.io/gaearon/pen/ZXeOGM?editors=0010


two different arrays:

function Blog(props) { 
  const sidebar = ( 
    <ul> 
      {props.posts.map((post) => 
        <li key={post.id}> 
          {post.title} 
        </li> 
      )} 
    </ul> 
  ); 
  const content = props.posts.map((post) => 
    <div key={post.id}> 
      <h3>{post.title}</h3> 
      <p>{post.content}</p> 
    </div> 
  ); 
  return ( 
    <div> 
      {sidebar} 
      <hr /> 
      {content} 
    </div> 
  ); 
} 
 
const posts = [ 
  {id: 1, title: 'Hello World', content: 'Welcome to learning 
React!'}, 
  {id: 2, title: 'Installation', content: 'You can install React 
from npm.'} 
]; 
 
const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Blog posts={posts} />);

Try it on CodePen

Keys serve as a hint to React but they don’t get passed to your components. If
you need the same value in your component, pass it explicitly as a prop with a
different name:

const content = posts.map((post) => 
  <Post 
    key={post.id} 
    id={post.id} 

https://codepen.io/gaearon/pen/NRZYGN?editors=0010


    title={post.title} /> 
);

With the example above, the Post component can read props.id, but not 
props.key.

Embedding map() in JSX

In the examples above we declared a separate listItems variable and included
it in JSX:

function NumberList(props) { 
  const numbers = props.numbers; 
  const listItems = numbers.map((number) => 
    <ListItem key={number.toString()} 
              value={number} /> 
  ); 
  return ( 
    <ul> 
      {listItems} 
    </ul> 
  ); 
}

JSX allows embedding any expression in curly braces so we could inline the 
map() result:

function NumberList(props) { 
  const numbers = props.numbers; 
  return ( 
    <ul> 
      {numbers.map((number) => 
        <ListItem key={number.toString()} 
                  value={number} /> 
      )} 
    </ul> 
  ); 
}

Try it on CodePen

Sometimes this results in clearer code, but this style can also be abused. Like in
JavaScript, it is up to you to decide whether it is worth extracting a variable for
readability. Keep in mind that if the map() body is too nested, it might be a
good time to extract a component.

https://codepen.io/gaearon/pen/BLvYrB?editors=0010


Forms

HTML form elements work a bit differently from other DOM elements in
React, because form elements naturally keep some internal state. For example,
this form in plain HTML accepts a single name:

This form has the default HTML form behavior of browsing to a new page
when the user submits the form. If you want this behavior in React, it just
works. But in most cases, it’s convenient to have a JavaScript function that
handles the submission of the form and has access to the data that the user
entered into the form. The standard way to achieve this is with a technique
called “controlled components”.

Controlled Components

In HTML, form elements such as <input>, <textarea>, and <select>

typically maintain their own state and update it based on user input. In React,
mutable state is typically kept in the state property of components, and only
updated with setState().

We can combine the two by making the React state be the “single source of
truth”. Then the React component that renders a form also controls what
happens in that form on subsequent user input. An input form element whose
value is controlled by React in this way is called a “controlled component”.

For example, if we want to make the previous example log the name when it is
submitted, we can write the form as a controlled component:

class NameForm extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {value: ''}; 
 

<form>
 <label>
   Name:
   <input type="text" name="name" />
 </label>
 <input type="submit" value="Submit" />
</form>



    this.handleChange = this.handleChange.bind(this); 
    this.handleSubmit = this.handleSubmit.bind(this); 
  } 
 
  handleChange(event) { 
    this.setState({value: event.target.value}); 
  } 
 
  handleSubmit(event) { 
    alert('A name was submitted: ' + this.state.value); 
    event.preventDefault(); 
  } 
 
  render() { 
    return ( 
      <form onSubmit={this.handleSubmit}> 
        <label> 
          Name: 
          <input type="text" value={this.state.value} onChange=
{this.handleChange} /> 
        </label> 
        <input type="submit" value="Submit" /> 
      </form> 
    ); 
  } 
}

Try it on CodePen

Since the value attribute is set on our form element, the displayed value will
always be this.state.value, making the React state the source of truth. Since
handleChange runs on every keystroke to update the React state, the displayed
value will update as the user types.

With a controlled component, the input’s value is always driven by the React
state. While this means you have to type a bit more code, you can now pass the
value to other UI elements too, or reset it from other event handlers.

The textarea Tag

In HTML, a <textarea> element defines its text by its children:

<textarea>
 Hello there, this is some text in a text area
</textarea>

https://codepen.io/gaearon/pen/VmmPgp?editors=0010


In React, a <textarea> uses a value attribute instead. This way, a form using a
<textarea> can be written very similarly to a form that uses a single-line input:

class EssayForm extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { 
      value: 'Please write an essay about your favorite DOM 
element.' 
    }; 
 
    this.handleChange = this.handleChange.bind(this); 
    this.handleSubmit = this.handleSubmit.bind(this); 
  } 
 
  handleChange(event) { 
    this.setState({value: event.target.value}); 
  } 
 
  handleSubmit(event) { 
    alert('An essay was submitted: ' + this.state.value); 
    event.preventDefault(); 
  } 
 
  render() { 
    return ( 
      <form onSubmit={this.handleSubmit}> 
        <label> 
          Essay: 
          <textarea value={this.state.value} onChange=
{this.handleChange} /> 
        </label> 
        <input type="submit" value="Submit" /> 
      </form> 
    ); 
  } 
}

Notice that this.state.value is initialized in the constructor, so that the text
area starts off with some text in it.

The select Tag

In HTML, <select> creates a drop-down list. For example, this HTML creates
a drop-down list of flavors:



Note that the Coconut option is initially selected, because of the selected
attribute. React, instead of using this selected attribute, uses a value attribute
on the root select tag. This is more convenient in a controlled component
because you only need to update it in one place. For example:

class FlavorForm extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {value: 'coconut'}; 
 
    this.handleChange = this.handleChange.bind(this); 
    this.handleSubmit = this.handleSubmit.bind(this); 
  } 
 
  handleChange(event) { 
    this.setState({value: event.target.value}); 
  } 
 
  handleSubmit(event) { 
    alert('Your favorite flavor is: ' + this.state.value); 
    event.preventDefault(); 
  } 
 
  render() { 
    return ( 
      <form onSubmit={this.handleSubmit}> 
        <label> 
          Pick your favorite flavor: 
          <select value={this.state.value} onChange=
{this.handleChange}> 
            <option value="grapefruit">Grapefruit</option> 
            <option value="lime">Lime</option> 
            <option value="coconut">Coconut</option> 
            <option value="mango">Mango</option> 
          </select> 
        </label> 
        <input type="submit" value="Submit" /> 
      </form> 
    ); 
  } 
}

<select>
 <option value="grapefruit">Grapefruit</option>
 <option value="lime">Lime</option>
 <option selected value="coconut">Coconut</option>
 <option value="mango">Mango</option>
</select>



Try it on CodePen

Overall, this makes it so that <input type="text">, <textarea>, and 
<select> all work very similarly - they all accept a value attribute that you can
use to implement a controlled component.

Note

You can pass an array into the value attribute, allowing you to select
multiple options in a select tag:

The file input Tag

In HTML, an <input type="file"> lets the user choose one or more files
from their device storage to be uploaded to a server or manipulated by
JavaScript via the File API.

Because its value is read-only, it is an uncontrolled component in React. It is
discussed together with other uncontrolled components later in the
documentation.

Handling Multiple Inputs

When you need to handle multiple controlled input elements, you can add a 
name attribute to each element and let the handler function choose what to do
based on the value of event.target.name.

For example:

class Reservation extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { 
      isGoing: true, 
      numberOfGuests: 2 
    }; 
 
    this.handleInputChange = this.handleInputChange.bind(this); 

<select multiple={true} value={['B', 'C']}>

<input type="file" />

https://codepen.io/gaearon/pen/JbbEzX?editors=0010
https://developer.mozilla.org/en-US/docs/Web/API/File/Using_files_from_web_applications


  } 
 
  handleInputChange(event) { 
    const target = event.target; 
    const value = target.type === 'checkbox' ? target.checked : 
target.value; 
    const name = target.name; 
 
    this.setState({ 
      [name]: value 
    }); 
  } 
 
  render() { 
    return ( 
      <form> 
        <label> 
          Is going: 
          <input 
            name="isGoing" 
            type="checkbox" 
            checked={this.state.isGoing} 
            onChange={this.handleInputChange} /> 
        </label> 
        <br /> 
        <label> 
          Number of guests: 
          <input 
            name="numberOfGuests" 
            type="number" 
            value={this.state.numberOfGuests} 
            onChange={this.handleInputChange} /> 
        </label> 
      </form> 
    ); 
  } 
}

Try it on CodePen

Note how we used the ES6 computed property name syntax to update the state
key corresponding to the given input name:

this.setState({ 
  [name]: value 
});

It is equivalent to this ES5 code:

https://codepen.io/gaearon/pen/wgedvV?editors=0010
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer#Computed_property_names


var partialState = {}; 
partialState[name] = value; 
this.setState(partialState);

Also, since setState() automatically merges a partial state into the current
state, we only needed to call it with the changed parts.

Controlled Input Null Value

Specifying the value prop on a controlled component prevents the user from
changing the input unless you desire so. If you’ve specified a value but the
input is still editable, you may have accidentally set value to undefined or 
null.

The following code demonstrates this. (The input is locked at first but becomes
editable after a short delay.)

Alternatives to Controlled Components

It can sometimes be tedious to use controlled components, because you need to
write an event handler for every way your data can change and pipe all of the
input state through a React component. This can become particularly annoying
when you are converting a preexisting codebase to React, or integrating a React
application with a non-React library. In these situations, you might want to
check out uncontrolled components, an alternative technique for implementing
input forms.

Fully-Fledged Solutions

If you’re looking for a complete solution including validation, keeping track of
the visited fields, and handling form submission, Formik is one of the popular
choices. However, it is built on the same principles of controlled components
and managing state — so don’t neglect to learn them.

ReactDOM.createRoot(mountNode).render(<input value="hi" />);

setTimeout(function() {
 ReactDOM.createRoot(mountNode).render(<input value={null} />);
}, 1000);

https://jaredpalmer.com/formik


Lifting State Up

Often, several components need to reflect the same changing data. We
recommend lifting the shared state up to their closest common ancestor. Let’s
see how this works in action.

In this section, we will create a temperature calculator that calculates whether
the water would boil at a given temperature.

We will start with a component called BoilingVerdict. It accepts the celsius
temperature as a prop, and prints whether it is enough to boil the water:

function BoilingVerdict(props) { 
  if (props.celsius >= 100) { 
    return <p>The water would boil.</p>; 
  } 
  return <p>The water would not boil.</p>; 
}

Next, we will create a component called Calculator. It renders an <input>
that lets you enter the temperature, and keeps its value in 
this.state.temperature.

Additionally, it renders the BoilingVerdict for the current input value.

class Calculator extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleChange = this.handleChange.bind(this); 
    this.state = {temperature: ''}; 
  } 
 
  handleChange(e) { 
    this.setState({temperature: e.target.value}); 
  } 
 
  render() { 
    const temperature = this.state.temperature; 
    return ( 
      <fieldset> 
        <legend>Enter temperature in Celsius:</legend> 
        <input 
          value={temperature} 
          onChange={this.handleChange} /> 
        <BoilingVerdict 



          celsius={parseFloat(temperature)} /> 
      </fieldset> 
    ); 
  } 
}

Try it on CodePen

Adding a Second Input

Our new requirement is that, in addition to a Celsius input, we provide a
Fahrenheit input, and they are kept in sync.

We can start by extracting a TemperatureInput component from Calculator.
We will add a new scale prop to it that can either be "c" or "f":

const scaleNames = { 
  c: 'Celsius', 
  f: 'Fahrenheit' 
}; 
 
class TemperatureInput extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleChange = this.handleChange.bind(this); 
    this.state = {temperature: ''}; 
  } 
 
  handleChange(e) { 
    this.setState({temperature: e.target.value}); 
  } 
 
  render() { 
    const temperature = this.state.temperature; 
    const scale = this.props.scale; 
    return ( 
      <fieldset> 
        <legend>Enter temperature in {scaleNames[scale]}:</legend> 
        <input value={temperature} 
               onChange={this.handleChange} /> 
      </fieldset> 
    ); 
  } 
}

We can now change the Calculator to render two separate temperature inputs:

https://codepen.io/gaearon/pen/ZXeOBm?editors=0010


class Calculator extends React.Component { 
  render() { 
    return ( 
      <div> 
        <TemperatureInput scale="c" /> 
        <TemperatureInput scale="f" /> 
      </div> 
    ); 
  } 
}

Try it on CodePen

We have two inputs now, but when you enter the temperature in one of them,
the other doesn’t update. This contradicts our requirement: we want to keep
them in sync.

We also can’t display the BoilingVerdict from Calculator. The Calculator
doesn’t know the current temperature because it is hidden inside the 
TemperatureInput.

Writing Conversion Functions

First, we will write two functions to convert from Celsius to Fahrenheit and
back:

These two functions convert numbers. We will write another function that takes
a string temperature and a converter function as arguments and returns a
string. We will use it to calculate the value of one input based on the other
input.

It returns an empty string on an invalid temperature, and it keeps the output
rounded to the third decimal place:

function toCelsius(fahrenheit) {
 return (fahrenheit - 32) * 5 / 9;
}

function toFahrenheit(celsius) {
 return (celsius * 9 / 5) + 32;
}

https://codepen.io/gaearon/pen/jGBryx?editors=0010


For example, tryConvert('abc', toCelsius) returns an empty string, and 
tryConvert('10.22', toFahrenheit) returns '50.396'.

Lifting State Up

Currently, both TemperatureInput components independently keep their
values in the local state:

class TemperatureInput extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleChange = this.handleChange.bind(this); 
    this.state = {temperature: ''}; 
  } 
 
  handleChange(e) { 
    this.setState({temperature: e.target.value}); 
  } 
 
  render() { 
    const temperature = this.state.temperature; 
    // ...  

However, we want these two inputs to be in sync with each other. When we
update the Celsius input, the Fahrenheit input should reflect the converted
temperature, and vice versa.

In React, sharing state is accomplished by moving it up to the closest common
ancestor of the components that need it. This is called “lifting state up”. We
will remove the local state from the TemperatureInput and move it into the 
Calculator instead.

function tryConvert(temperature, convert) {
 const input = parseFloat(temperature);
 if (Number.isNaN(input)) {
   return '';
 }
 const output = convert(input);
 const rounded = Math.round(output * 1000) / 1000;
 return rounded.toString();
}



If the Calculator owns the shared state, it becomes the “source of truth” for
the current temperature in both inputs. It can instruct them both to have values
that are consistent with each other. Since the props of both TemperatureInput
components are coming from the same parent Calculator component, the two
inputs will always be in sync.

Let’s see how this works step by step.

First, we will replace this.state.temperature with 
this.props.temperature in the TemperatureInput component. For now, let’s
pretend this.props.temperature already exists, although we will need to pass
it from the Calculator in the future:

  render() { 
    // Before: const temperature = this.state.temperature; 
    const temperature = this.props.temperature; 
    // ...

We know that props are read-only. When the temperature was in the local
state, the TemperatureInput could just call this.setState() to change it.
However, now that the temperature is coming from the parent as a prop, the 
TemperatureInput has no control over it.

In React, this is usually solved by making a component “controlled”. Just like
the DOM <input> accepts both a value and an onChange prop, so can the
custom TemperatureInput accept both temperature and 
onTemperatureChange props from its parent Calculator.

Now, when the TemperatureInput wants to update its temperature, it calls 
this.props.onTemperatureChange:

  handleChange(e) { 
    // Before: this.setState({temperature: e.target.value}); 
    this.props.onTemperatureChange(e.target.value); 
    // ...

Note:

There is no special meaning to either temperature or 
onTemperatureChange prop names in custom components. We could have
called them anything else, like name them value and onChange which is a
common convention.



The onTemperatureChange prop will be provided together with the 
temperature prop by the parent Calculator component. It will handle the
change by modifying its own local state, thus re-rendering both inputs with the
new values. We will look at the new Calculator implementation very soon.

Before diving into the changes in the Calculator, let’s recap our changes to
the TemperatureInput component. We have removed the local state from it,
and instead of reading this.state.temperature, we now read 
this.props.temperature. Instead of calling this.setState() when we want
to make a change, we now call this.props.onTemperatureChange(), which
will be provided by the Calculator:

class TemperatureInput extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleChange = this.handleChange.bind(this); 
  } 
 
  handleChange(e) { 
    this.props.onTemperatureChange(e.target.value); 
  } 
 
  render() { 
    const temperature = this.props.temperature; 
    const scale = this.props.scale; 
    return ( 
      <fieldset> 
        <legend>Enter temperature in {scaleNames[scale]}:</legend> 
        <input value={temperature} 
               onChange={this.handleChange} /> 
      </fieldset> 
    ); 
  } 
}

Now let’s turn to the Calculator component.

We will store the current input’s temperature and scale in its local state. This
is the state we “lifted up” from the inputs, and it will serve as the “source of
truth” for both of them. It is the minimal representation of all the data we need
to know in order to render both inputs.

For example, if we enter 37 into the Celsius input, the state of the Calculator
component will be:



If we later edit the Fahrenheit field to be 212, the state of the Calculator will
be:

We could have stored the value of both inputs but it turns out to be
unnecessary. It is enough to store the value of the most recently changed input,
and the scale that it represents. We can then infer the value of the other input
based on the current temperature and scale alone.

The inputs stay in sync because their values are computed from the same state:

class Calculator extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleCelsiusChange = 
this.handleCelsiusChange.bind(this); 
    this.handleFahrenheitChange = 
this.handleFahrenheitChange.bind(this); 
    this.state = {temperature: '', scale: 'c'}; 
  } 
 
  handleCelsiusChange(temperature) { 
    this.setState({scale: 'c', temperature}); 
  } 
 
  handleFahrenheitChange(temperature) { 
    this.setState({scale: 'f', temperature}); 
  } 
 
  render() { 
    const scale = this.state.scale; 
    const temperature = this.state.temperature; 
    const celsius = scale === 'f' ? tryConvert(temperature, 
toCelsius) : temperature; 
    const fahrenheit = scale === 'c' ? tryConvert(temperature, 
toFahrenheit) : temperature; 
 

{
 temperature: '37',
 scale: 'c'
}

{
 temperature: '212',
 scale: 'f'
}



    return ( 
      <div> 
        <TemperatureInput 
          scale="c" 
          temperature={celsius} 
          onTemperatureChange={this.handleCelsiusChange} /> 
        <TemperatureInput 
          scale="f" 
          temperature={fahrenheit} 
          onTemperatureChange={this.handleFahrenheitChange} /> 
        <BoilingVerdict 
          celsius={parseFloat(celsius)} /> 
      </div> 
    ); 
  } 
}

Try it on CodePen

Now, no matter which input you edit, this.state.temperature and 
this.state.scale in the Calculator get updated. One of the inputs gets the
value as is, so any user input is preserved, and the other input value is always
recalculated based on it.

Let’s recap what happens when you edit an input:

React calls the function specified as onChange on the DOM <input>. In
our case, this is the handleChange method in the TemperatureInput
component.
The handleChange method in the TemperatureInput component calls 
this.props.onTemperatureChange() with the new desired value. Its
props, including onTemperatureChange, were provided by its parent
component, the Calculator.
When it previously rendered, the Calculator had specified that 
onTemperatureChange of the Celsius TemperatureInput is the 
Calculator’s handleCelsiusChange method, and onTemperatureChange
of the Fahrenheit TemperatureInput is the Calculator’s 
handleFahrenheitChange method. So either of these two Calculator
methods gets called depending on which input we edited.
Inside these methods, the Calculator component asks React to re-render
itself by calling this.setState() with the new input value and the
current scale of the input we just edited.

https://codepen.io/gaearon/pen/WZpxpz?editors=0010


React calls the Calculator component’s render method to learn what the
UI should look like. The values of both inputs are recomputed based on
the current temperature and the active scale. The temperature conversion
is performed here.
React calls the render methods of the individual TemperatureInput
components with their new props specified by the Calculator. It learns
what their UI should look like.
React calls the render method of the BoilingVerdict component, passing
the temperature in Celsius as its props.
React DOM updates the DOM with the boiling verdict and to match the
desired input values. The input we just edited receives its current value,
and the other input is updated to the temperature after conversion.

Every update goes through the same steps so the inputs stay in sync.

Lessons Learned

There should be a single “source of truth” for any data that changes in a React
application. Usually, the state is first added to the component that needs it for
rendering. Then, if other components also need it, you can lift it up to their
closest common ancestor. Instead of trying to sync the state between different
components, you should rely on the top-down data flow.

Lifting state involves writing more “boilerplate” code than two-way binding
approaches, but as a benefit, it takes less work to find and isolate bugs. Since
any state “lives” in some component and that component alone can change it,
the surface area for bugs is greatly reduced. Additionally, you can implement
any custom logic to reject or transform user input.

If something can be derived from either props or state, it probably shouldn’t be
in the state. For example, instead of storing both celsiusValue and 
fahrenheitValue, we store just the last edited temperature and its scale. The
value of the other input can always be calculated from them in the render()
method. This lets us clear or apply rounding to the other field without losing
any precision in the user input.

When you see something wrong in the UI, you can use React Developer Tools
to inspect the props and move up the tree until you find the component
responsible for updating the state. This lets you trace the bugs to their source:

https://github.com/facebook/react/tree/main/packages/react-devtools


Composition vs Inheritance

React has a powerful composition model, and we recommend using
composition instead of inheritance to reuse code between components.

In this section, we will consider a few problems where developers new to React
often reach for inheritance, and show how we can solve them with
composition.

Containment

Some components don’t know their children ahead of time. This is especially
common for components like Sidebar or Dialog that represent generic
“boxes”.

We recommend that such components use the special children prop to pass
children elements directly into their output:

function FancyBorder(props) { 
  return ( 
    <div className={'FancyBorder FancyBorder-' + props.color}> 
      {props.children} 
    </div> 
  ); 
}



This lets other components pass arbitrary children to them by nesting the JSX:

function WelcomeDialog() { 
  return ( 
    <FancyBorder color="blue"> 
      <h1 className="Dialog-title"> 
        Welcome 
      </h1> 
      <p className="Dialog-message"> 
        Thank you for visiting our spacecraft! 
      </p> 
    </FancyBorder> 
  ); 
}

Try it on CodePen

Anything inside the <FancyBorder> JSX tag gets passed into the FancyBorder
component as a children prop. Since FancyBorder renders {props.children}
inside a <div>, the passed elements appear in the final output.

While this is less common, sometimes you might need multiple “holes” in a
component. In such cases you may come up with your own convention instead
of using children:

function SplitPane(props) { 
  return ( 
    <div className="SplitPane"> 
      <div className="SplitPane-left"> 
        {props.left} 
      </div> 
      <div className="SplitPane-right"> 
        {props.right} 
      </div> 
    </div> 
  ); 
} 
 
function App() { 
  return ( 
    <SplitPane 
      left={ 
        <Contacts /> 
      } 
      right={ 
        <Chat /> 
      } /> 

https://codepen.io/gaearon/pen/ozqNOV?editors=0010


  ); 
}

Try it on CodePen

React elements like <Contacts /> and <Chat /> are just objects, so you can
pass them as props like any other data. This approach may remind you of
“slots” in other libraries but there are no limitations on what you can pass as
props in React.

Specialization

Sometimes we think about components as being “special cases” of other
components. For example, we might say that a WelcomeDialog is a special case
of Dialog.

In React, this is also achieved by composition, where a more “specific”
component renders a more “generic” one and configures it with props:

function Dialog(props) { 
  return ( 
    <FancyBorder color="blue"> 
      <h1 className="Dialog-title"> 
        {props.title} 
      </h1> 
      <p className="Dialog-message"> 
        {props.message} 
      </p> 
    </FancyBorder> 
  ); 
} 
 
function WelcomeDialog() { 
  return ( 
    <Dialog 
      title="Welcome" 
      message="Thank you for visiting our spacecraft!" /> 
  ); 
}

Try it on CodePen

Composition works equally well for components defined as classes:

https://codepen.io/gaearon/pen/gwZOJp?editors=0010
https://codepen.io/gaearon/pen/kkEaOZ?editors=0010


function Dialog(props) { 
  return ( 
    <FancyBorder color="blue"> 
      <h1 className="Dialog-title"> 
        {props.title} 
      </h1> 
      <p className="Dialog-message"> 
        {props.message} 
      </p> 
      {props.children} 
    </FancyBorder> 
  ); 
} 
 
class SignUpDialog extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleChange = this.handleChange.bind(this); 
    this.handleSignUp = this.handleSignUp.bind(this); 
    this.state = {login: ''}; 
  } 
 
  render() { 
    return ( 
      <Dialog title="Mars Exploration Program" 
              message="How should we refer to you?"> 
        <input value={this.state.login} 
               onChange={this.handleChange} /> 
        <button onClick={this.handleSignUp}> 
          Sign Me Up! 
        </button> 
      </Dialog> 
    ); 
  } 
 
  handleChange(e) { 
    this.setState({login: e.target.value}); 
  } 
 
  handleSignUp() { 
    alert(`Welcome aboard, ${this.state.login}!`); 
  } 
}

Try it on CodePen

So What About Inheritance?

https://codepen.io/gaearon/pen/gwZbYa?editors=0010


At Facebook, we use React in thousands of components, and we haven’t found
any use cases where we would recommend creating component inheritance
hierarchies.

Props and composition give you all the flexibility you need to customize a
component’s look and behavior in an explicit and safe way. Remember that
components may accept arbitrary props, including primitive values, React
elements, or functions.

If you want to reuse non-UI functionality between components, we suggest
extracting it into a separate JavaScript module. The components may import it
and use that function, object, or a class, without extending it.

Thinking in React

React is, in our opinion, the premier way to build big, fast Web apps with
JavaScript. It has scaled very well for us at Facebook and Instagram.

One of the many great parts of React is how it makes you think about apps as
you build them. In this document, we’ll walk you through the thought process
of building a searchable product data table using React.

Start With A Mock

Imagine that we already have a JSON API and a mock from our designer. The
mock looks like this:



Mockup

Our JSON API returns some data that looks like this:

[ 
  {category: "Sporting Goods", price: "$49.99", stocked: true, 
name: "Football"}, 
  {category: "Sporting Goods", price: "$9.99", stocked: true, 
name: "Baseball"}, 
  {category: "Sporting Goods", price: "$29.99", stocked: false, 
name: "Basketball"}, 
  {category: "Electronics", price: "$99.99", stocked: true, name: 
"iPod Touch"}, 
  {category: "Electronics", price: "$399.99", stocked: false, 
name: "iPhone 5"}, 
  {category: "Electronics", price: "$199.99", stocked: true, name: 
"Nexus 7"} 
];

Step 1: Break The UI Into A Component Hierarchy

The first thing you’ll want to do is to draw boxes around every component (and
subcomponent) in the mock and give them all names. If you’re working with a
designer, they may have already done this, so go talk to them! Their Photoshop
layer names may end up being the names of your React components!

But how do you know what should be its own component? Use the same
techniques for deciding if you should create a new function or object. One such
technique is the single responsibility principle, that is, a component should

https://en.wikipedia.org/wiki/Single_responsibility_principle


ideally only do one thing. If it ends up growing, it should be decomposed into
smaller subcomponents.

Since you’re often displaying a JSON data model to a user, you’ll find that if
your model was built correctly, your UI (and therefore your component
structure) will map nicely. That’s because UI and data models tend to adhere to
the same information architecture. Separate your UI into components, where
each component matches one piece of your data model.

Diagram showing nesting of components

You’ll see here that we have five components in our app. We’ve italicized the
data each component represents. The numbers in the image correspond to the
numbers below.

1. FilterableProductTable (orange): contains the entirety of the example
2. SearchBar (blue): receives all user input
3. ProductTable (green): displays and filters the data collection based on

user input
4. ProductCategoryRow (turquoise): displays a heading for each category
5. ProductRow (red): displays a row for each product



If you look at ProductTable, you’ll see that the table header (containing the
“Name” and “Price” labels) isn’t its own component. This is a matter of
preference, and there’s an argument to be made either way. For this example,
we left it as part of ProductTable because it is part of rendering the data
collection which is ProductTable’s responsibility. However, if this header
grows to be complex (e.g., if we were to add affordances for sorting), it would
certainly make sense to make this its own ProductTableHeader component.

Now that we’ve identified the components in our mock, let’s arrange them into
a hierarchy. Components that appear within another component in the mock
should appear as a child in the hierarchy:

FilterableProductTable

SearchBar

ProductTable

ProductCategoryRow

ProductRow

Step 2: Build A Static Version in React

See the Pen Thinking In React: Step 2 on CodePen.

Now that you have your component hierarchy, it’s time to implement your app.
The easiest way is to build a version that takes your data model and renders the
UI but has no interactivity. It’s best to decouple these processes because
building a static version requires a lot of typing and no thinking, and adding
interactivity requires a lot of thinking and not a lot of typing. We’ll see why.

To build a static version of your app that renders your data model, you’ll want
to build components that reuse other components and pass data using props.
props are a way of passing data from parent to child. If you’re familiar with the
concept of state, don’t use state at all to build this static version. State is
reserved only for interactivity, that is, data that changes over time. Since this is
a static version of the app, you don’t need it.

You can build top-down or bottom-up. That is, you can either start with
building the components higher up in the hierarchy (i.e. starting with 
FilterableProductTable) or with the ones lower in it (ProductRow). In

https://codepen.io/gaearon/pen/BwWzwm
https://codepen.io/


simpler examples, it’s usually easier to go top-down, and on larger projects, it’s
easier to go bottom-up and write tests as you build.

At the end of this step, you’ll have a library of reusable components that render
your data model. The components will only have render() methods since this
is a static version of your app. The component at the top of the hierarchy
(FilterableProductTable) will take your data model as a prop. If you make a
change to your underlying data model and call root.render() again, the UI
will be updated. You can see how your UI is updated and where to make
changes. React’s one-way data flow (also called one-way binding) keeps
everything modular and fast.

Refer to the React docs if you need help executing this step.

A Brief Interlude: Props vs State

There are two types of “model” data in React: props and state. It’s important to
understand the distinction between the two; skim the official React docs if you
aren’t sure what the difference is. See also FAQ: What is the difference
between state and props?

Step 3: Identify The Minimal (but complete) Representation Of UI
State

To make your UI interactive, you need to be able to trigger changes to your
underlying data model. React achieves this with state.

To build your app correctly, you first need to think of the minimal set of
mutable state that your app needs. The key here is DRY: Don’t Repeat Yourself.
Figure out the absolute minimal representation of the state your application
needs and compute everything else you need on-demand. For example, if
you’re building a TODO list, keep an array of the TODO items around; don’t
keep a separate state variable for the count. Instead, when you want to render
the TODO count, take the length of the TODO items array.

Think of all the pieces of data in our example application. We have:

The original list of products
The search text the user has entered

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


The value of the checkbox
The filtered list of products

Let’s go through each one and figure out which one is state. Ask three
questions about each piece of data:

1. Is it passed in from a parent via props? If so, it probably isn’t state.
2. Does it remain unchanged over time? If so, it probably isn’t state.
3. Can you compute it based on any other state or props in your component?

If so, it isn’t state.

The original list of products is passed in as props, so that’s not state. The search
text and the checkbox seem to be state since they change over time and can’t be
computed from anything. And finally, the filtered list of products isn’t state
because it can be computed by combining the original list of products with the
search text and value of the checkbox.

So finally, our state is:

The search text the user has entered
The value of the checkbox

Step 4: Identify Where Your State Should Live

See the Pen Thinking In React: Step 4 on CodePen.

OK, so we’ve identified what the minimal set of app state is. Next, we need to
identify which component mutates, or owns, this state.

Remember: React is all about one-way data flow down the component
hierarchy. It may not be immediately clear which component should own what
state. This is often the most challenging part for newcomers to understand,
so follow these steps to figure it out:

For each piece of state in your application:

Identify every component that renders something based on that state.
Find a common owner component (a single component above all the
components that need the state in the hierarchy).

https://codepen.io/gaearon/pen/qPrNQZ
https://codepen.io/


Either the common owner or another component higher up in the
hierarchy should own the state.
If you can’t find a component where it makes sense to own the state,
create a new component solely for holding the state and add it somewhere
in the hierarchy above the common owner component.

Let’s run through this strategy for our application:

ProductTable needs to filter the product list based on state and SearchBar
needs to display the search text and checked state.
The common owner component is FilterableProductTable.
It conceptually makes sense for the filter text and checked value to live in 
FilterableProductTable

Cool, so we’ve decided that our state lives in FilterableProductTable. First,
add an instance property this.state = {filterText: '', inStockOnly: 
false} to FilterableProductTable’s constructor to reflect the initial state
of your application. Then, pass filterText and inStockOnly to ProductTable
and SearchBar as a prop. Finally, use these props to filter the rows in 
ProductTable and set the values of the form fields in SearchBar.

You can start seeing how your application will behave: set filterText to 
"ball" and refresh your app. You’ll see that the data table is updated correctly.

Step 5: Add Inverse Data Flow

See the Pen Thinking In React: Step 5 on CodePen.

So far, we’ve built an app that renders correctly as a function of props and state
flowing down the hierarchy. Now it’s time to support data flowing the other
way: the form components deep in the hierarchy need to update the state in 
FilterableProductTable.

React makes this data flow explicit to help you understand how your program
works, but it does require a little more typing than traditional two-way data
binding.

If you try to type or check the box in the previous version of the example (step
4), you’ll see that React ignores your input. This is intentional, as we’ve set the

https://codepen.io/gaearon/pen/LzWZvb
https://codepen.io/


value prop of the input to always be equal to the state passed in from 
FilterableProductTable.

Let’s think about what we want to happen. We want to make sure that
whenever the user changes the form, we update the state to reflect the user
input. Since components should only update their own state, 
FilterableProductTable will pass callbacks to SearchBar that will fire
whenever the state should be updated. We can use the onChange event on the
inputs to be notified of it. The callbacks passed by FilterableProductTable
will call setState(), and the app will be updated.

And That’s It

Hopefully, this gives you an idea of how to think about building components
and applications with React. While it may be a little more typing than you’re
used to, remember that code is read far more than it’s written, and it’s less
difficult to read this modular, explicit code. As you start to build large libraries
of components, you’ll appreciate this explicitness and modularity, and with
code reuse, your lines of code will start to shrink. :)



Advanced Guides
Accessibility

Accessibility

Why Accessibility?

Web accessibility (also referred to as a11y) is the design and creation of
websites that can be used by everyone. Accessibility support is necessary to
allow assistive technology to interpret web pages.

React fully supports building accessible websites, often by using standard
HTML techniques.

Standards and Guidelines

WCAG

The Web Content Accessibility Guidelines provides guidelines for creating
accessible web sites.

The following WCAG checklists provide an overview:

WCAG checklist from Wuhcag
WCAG checklist from WebAIM
Checklist from The A11Y Project

WAI-ARIA

The Web Accessibility Initiative - Accessible Rich Internet Applications
document contains techniques for building fully accessible JavaScript
widgets.

https://en.wiktionary.org/wiki/a11y
https://www.w3.org/WAI/intro/wcag
https://www.wuhcag.com/wcag-checklist/
https://webaim.org/standards/wcag/checklist
https://a11yproject.com/checklist.html
https://www.w3.org/WAI/intro/aria


Note that all aria-* HTML attributes are fully supported in JSX. Whereas
most DOM properties and attributes in React are camelCased, these
attributes should be hyphen-cased (also known as kebab-case, lisp-case, etc)
as they are in plain HTML:

<input 
  type="text" 
  aria-label={labelText} 
  aria-required="true" 
  onChange={onchangeHandler} 
  value={inputValue} 
  name="name" 
/>

Semantic HTML

Semantic HTML is the foundation of accessibility in a web application.
Using the various HTML elements to reinforce the meaning of information
in our websites will often give us accessibility for free.

MDN HTML elements reference

Sometimes we break HTML semantics when we add <div> elements to our
JSX to make our React code work, especially when working with lists (<ol>,
<ul> and <dl>) and the HTML <table>. In these cases we should rather use
React Fragments to group together multiple elements.

For example,

import React, { Fragment } from 'react'; 
 
function ListItem({ item }) { 
  return ( 
    <Fragment> 
      <dt>{item.term}</dt> 
      <dd>{item.description}</dd> 
    </Fragment> 
  ); 
} 
 
function Glossary(props) { 
  return ( 
    <dl> 

https://developer.mozilla.org/en-US/docs/Web/HTML/Element


      {props.items.map(item => ( 
        <ListItem item={item} key={item.id} /> 
      ))} 
    </dl> 
  ); 
}

You can map a collection of items to an array of fragments as you would any
other type of element as well:

function Glossary(props) { 
  return ( 
    <dl> 
      {props.items.map(item => ( 
        // Fragments should also have a `key` prop when mapping 
collections 
        <Fragment key={item.id}> 
          <dt>{item.term}</dt> 
          <dd>{item.description}</dd> 
        </Fragment> 
      ))} 
    </dl> 
  ); 
}

When you don’t need any props on the Fragment tag you can use the short
syntax, if your tooling supports it:

function ListItem({ item }) { 
  return ( 
    <> 
      <dt>{item.term}</dt> 
      <dd>{item.description}</dd> 
    </> 
  ); 
}

For more info, see the Fragments documentation.

Accessible Forms

Labeling



Every HTML form control, such as <input> and <textarea>, needs to be
labeled accessibly. We need to provide descriptive labels that are also
exposed to screen readers.

The following resources show us how to do this:

The W3C shows us how to label elements
WebAIM shows us how to label elements
The Paciello Group explains accessible names

Although these standard HTML practices can be directly used in React, note
that the for attribute is written as htmlFor in JSX:

<label htmlFor="namedInput">Name:</label> 
<input id="namedInput" type="text" name="name"/>

Notifying the user of errors

Error situations need to be understood by all users. The following link shows
us how to expose error texts to screen readers as well:

The W3C demonstrates user notifications
WebAIM looks at form validation

Focus Control

Ensure that your web application can be fully operated with the keyboard
only:

WebAIM talks about keyboard accessibility

Keyboard focus and focus outline

Keyboard focus refers to the current element in the DOM that is selected to
accept input from the keyboard. We see it everywhere as a focus outline
similar to that shown in the following image:

https://www.w3.org/WAI/tutorials/forms/labels/
https://webaim.org/techniques/forms/controls
https://www.paciellogroup.com/blog/2017/04/what-is-an-accessible-name/
https://www.w3.org/WAI/tutorials/forms/notifications/
https://webaim.org/techniques/formvalidation/
https://webaim.org/techniques/keyboard/


Only ever use CSS that removes this outline, for example by setting 
outline: 0, if you are replacing it with another focus outline
implementation.

Mechanisms to skip to desired content

Provide a mechanism to allow users to skip past navigation sections in your
application as this assists and speeds up keyboard navigation.

Skiplinks or Skip Navigation Links are hidden navigation links that only
become visible when keyboard users interact with the page. They are very
easy to implement with internal page anchors and some styling:

WebAIM - Skip Navigation Links

Also use landmark elements and roles, such as <main> and <aside>, to
demarcate page regions as assistive technology allow the user to quickly
navigate to these sections.

Read more about the use of these elements to enhance accessibility here:

Accessible Landmarks

Programmatically managing focus

Our React applications continuously modify the HTML DOM during
runtime, sometimes leading to keyboard focus being lost or set to an
unexpected element. In order to repair this, we need to programmatically
nudge the keyboard focus in the right direction. For example, by resetting
keyboard focus to a button that opened a modal window after that modal
window is closed.

MDN Web Docs takes a look at this and describes how we can build
keyboard-navigable JavaScript widgets.

https://webaim.org/techniques/skipnav/
https://www.scottohara.me/blog/2018/03/03/landmarks.html
https://developer.mozilla.org/en-US/docs/Web/Accessibility/Keyboard-navigable_JavaScript_widgets


To set focus in React, we can use Refs to DOM elements.

Using this, we first create a ref to an element in the JSX of a component
class:

class CustomTextInput extends React.Component { 
  constructor(props) { 
    super(props); 
    // Create a ref to store the textInput DOM element 
    this.textInput = React.createRef(); 
  } 
  render() { 
  // Use the `ref` callback to store a reference to the text 
input DOM 
  // element in an instance field (for example, this.textInput). 
    return ( 
      <input 
        type="text" 
        ref={this.textInput} 
      /> 
    ); 
  } 
}

Then we can focus it elsewhere in our component when needed:

Sometimes a parent component needs to set focus to an element in a child
component. We can do this by exposing DOM refs to parent components
through a special prop on the child component that forwards the parent’s ref
to the child’s DOM node.

function CustomTextInput(props) { 
  return ( 
    <div> 
      <input ref={props.inputRef} /> 
    </div> 
  ); 
} 
 

focus() {
 // Explicitly focus the text input using the raw DOM API
 // Note: we're accessing "current" to get the DOM node
 this.textInput.current.focus();
}



class Parent extends React.Component { 
  constructor(props) { 
    super(props); 
    this.inputElement = React.createRef(); 
  } 
  render() { 
    return ( 
      <CustomTextInput inputRef={this.inputElement} /> 
    ); 
  } 
} 
 
// Now you can set focus when required. 
this.inputElement.current.focus();

When using a HOC to extend components, it is recommended to forward the
ref to the wrapped component using the forwardRef function of React. If a
third party HOC does not implement ref forwarding, the above pattern can
still be used as a fallback.

A great focus management example is the react-aria-modal. This is a
relatively rare example of a fully accessible modal window. Not only does it
set initial focus on the cancel button (preventing the keyboard user from
accidentally activating the success action) and trap keyboard focus inside the
modal, it also resets focus back to the element that initially triggered the
modal.

Note:

While this is a very important accessibility feature, it is also a technique
that should be used judiciously. Use it to repair the keyboard focus flow
when it is disturbed, not to try and anticipate how users want to use
applications.

Mouse and pointer events

Ensure that all functionality exposed through a mouse or pointer event can
also be accessed using the keyboard alone. Depending only on the pointer
device will lead to many cases where keyboard users cannot use your
application.

https://github.com/davidtheclark/react-aria-modal


To illustrate this, let’s look at a prolific example of broken accessibility
caused by click events. This is the outside click pattern, where a user can
disable an opened popover by clicking outside the element.

This is typically implemented by attaching a click event to the window
object that closes the popover:

class OuterClickExample extends React.Component { 
  constructor(props) { 
    super(props); 
 
    this.state = { isOpen: false }; 
    this.toggleContainer = React.createRef(); 
 
    this.onClickHandler = this.onClickHandler.bind(this); 
    this.onClickOutsideHandler = 
this.onClickOutsideHandler.bind(this); 
  } 
 
  componentDidMount() { 
    window.addEventListener('click', 
this.onClickOutsideHandler); 
  } 
 
  componentWillUnmount() { 
    window.removeEventListener('click', 
this.onClickOutsideHandler); 
  } 
 
  onClickHandler() { 
    this.setState(currentState => ({ 
      isOpen: !currentState.isOpen 
    })); 
  } 
 



  onClickOutsideHandler(event) { 
    if (this.state.isOpen && 
!this.toggleContainer.current.contains(event.target)) { 
      this.setState({ isOpen: false }); 
    } 
  } 
 
  render() { 
    return ( 
      <div ref={this.toggleContainer}> 
        <button onClick={this.onClickHandler}>Select an 
option</button> 
        {this.state.isOpen && ( 
          <ul> 
            <li>Option 1</li> 
            <li>Option 2</li> 
            <li>Option 3</li> 
          </ul> 
        )} 
      </div> 
    ); 
  } 
}

This may work fine for users with pointer devices, such as a mouse, but
operating this with the keyboard alone leads to broken functionality when
tabbing to the next element as the window object never receives a click
event. This can lead to obscured functionality which blocks users from using
your application.

The same functionality can be achieved by using appropriate event handlers
instead, such as onBlur and onFocus:



class BlurExample extends React.Component { 
  constructor(props) { 
    super(props); 
 
    this.state = { isOpen: false }; 
    this.timeOutId = null; 
 
    this.onClickHandler = this.onClickHandler.bind(this); 
    this.onBlurHandler = this.onBlurHandler.bind(this); 
    this.onFocusHandler = this.onFocusHandler.bind(this); 
  } 
 
  onClickHandler() { 
    this.setState(currentState => ({ 
      isOpen: !currentState.isOpen 
    })); 
  } 
 
  // We close the popover on the next tick by using setTimeout. 
  // This is necessary because we need to first check if 
  // another child of the element has received focus as 
  // the blur event fires prior to the new focus event. 
  onBlurHandler() { 
    this.timeOutId = setTimeout(() => { 
      this.setState({ 
        isOpen: false 
      }); 
    }); 
  } 
 
  // If a child receives focus, do not close the popover. 
  onFocusHandler() { 
    clearTimeout(this.timeOutId); 
  } 
 
  render() { 
    // React assists us by bubbling the blur and 
    // focus events to the parent. 
    return ( 
      <div onBlur={this.onBlurHandler} 
           onFocus={this.onFocusHandler}> 
        <button onClick={this.onClickHandler} 
                aria-haspopup="true" 
                aria-expanded={this.state.isOpen}> 
          Select an option 
        </button> 
        {this.state.isOpen && ( 
          <ul> 



            <li>Option 1</li> 
            <li>Option 2</li> 
            <li>Option 3</li> 
          </ul> 
        )} 
      </div> 
    ); 
  } 
}

This code exposes the functionality to both pointer device and keyboard
users. Also note the added aria-* props to support screen-reader users. For
simplicity’s sake the keyboard events to enable arrow key interaction of the
popover options have not been implemented.

This is one example of many cases where depending on only pointer and
mouse events will break functionality for keyboard users. Always testing
with the keyboard will immediately highlight the problem areas which can
then be fixed by using keyboard aware event handlers.

More Complex Widgets

A more complex user experience should not mean a less accessible one.
Whereas accessibility is most easily achieved by coding as close to HTML
as possible, even the most complex widget can be coded accessibly.

Here we require knowledge of ARIA Roles as well as ARIA States and
Properties. These are toolboxes filled with HTML attributes that are fully
supported in JSX and enable us to construct fully accessible, highly
functional React components.

https://www.w3.org/TR/wai-aria/#roles
https://www.w3.org/TR/wai-aria/#states_and_properties


Each type of widget has a specific design pattern and is expected to function
in a certain way by users and user agents alike:

WAI-ARIA Authoring Practices - Design Patterns and Widgets
Heydon Pickering - ARIA Examples
Inclusive Components

Other Points for Consideration

Setting the language

Indicate the human language of page texts as screen reader software uses this
to select the correct voice settings:

WebAIM - Document Language

Setting the document title

Set the document <title> to correctly describe the current page content as
this ensures that the user remains aware of the current page context:

WCAG - Understanding the Document Title Requirement

We can set this in React using the React Document Title Component.

Color contrast

Ensure that all readable text on your website has sufficient color contrast to
remain maximally readable by users with low vision:

WCAG - Understanding the Color Contrast Requirement
Everything About Color Contrast And Why You Should Rethink It
A11yProject - What is Color Contrast

It can be tedious to manually calculate the proper color combinations for all
cases in your website so instead, you can calculate an entire accessible color
palette with Colorable.

https://www.w3.org/TR/wai-aria-practices/#aria_ex
https://heydonworks.com/article/practical-aria-examples/
https://inclusive-components.design/
https://webaim.org/techniques/screenreader/#language
https://www.w3.org/TR/UNDERSTANDING-WCAG20/navigation-mechanisms-title.html
https://github.com/gaearon/react-document-title
https://www.w3.org/TR/UNDERSTANDING-WCAG20/visual-audio-contrast-contrast.html
https://www.smashingmagazine.com/2014/10/color-contrast-tips-and-tools-for-accessibility/
https://a11yproject.com/posts/what-is-color-contrast/
https://colorable.jxnblk.com/


Both the aXe and WAVE tools mentioned below also include color contrast
tests and will report on contrast errors.

If you want to extend your contrast testing abilities you can use these tools:

WebAIM - Color Contrast Checker
The Paciello Group - Color Contrast Analyzer

Development and Testing Tools

There are a number of tools we can use to assist in the creation of accessible
web applications.

The keyboard

By far the easiest and also one of the most important checks is to test if your
entire website can be reached and used with the keyboard alone. Do this by:

1. Disconnecting your mouse.
2. Using Tab and Shift+Tab to browse.
3. Using Enter to activate elements.
4. Where required, using your keyboard arrow keys to interact with some

elements, such as menus and dropdowns.

Development assistance

We can check some accessibility features directly in our JSX code. Often
intellisense checks are already provided in JSX aware IDE’s for the ARIA
roles, states and properties. We also have access to the following tool:

eslint-plugin-jsx-a11y

The eslint-plugin-jsx-a11y plugin for ESLint provides AST linting feedback
regarding accessibility issues in your JSX. Many IDE’s allow you to
integrate these findings directly into code analysis and source code windows.

https://webaim.org/resources/contrastchecker/
https://www.paciellogroup.com/resources/contrastanalyser/
https://github.com/evcohen/eslint-plugin-jsx-a11y


Create React App has this plugin with a subset of rules activated. If you
want to enable even more accessibility rules, you can create an .eslintrc
file in the root of your project with this content:

Testing accessibility in the browser

A number of tools exist that can run accessibility audits on web pages in
your browser. Please use them in combination with other accessibility
checks mentioned here as they can only test the technical accessibility of
your HTML.

aXe, aXe-core and react-axe

Deque Systems offers aXe-core for automated and end-to-end accessibility
tests of your applications. This module includes integrations for Selenium.

The Accessibility Engine or aXe, is an accessibility inspector browser
extension built on aXe-core.

You can also use the @axe-core/react module to report these accessibility
findings directly to the console while developing and debugging.

WebAIM WAVE

The Web Accessibility Evaluation Tool is another accessibility browser
extension.

Accessibility inspectors and the Accessibility Tree

The Accessibility Tree is a subset of the DOM tree that contains accessible
objects for every DOM element that should be exposed to assistive
technology, such as screen readers.

{
 "extends": ["react-app", "plugin:jsx-a11y/recommended"],
 "plugins": ["jsx-a11y"]
}

https://github.com/facebookincubator/create-react-app
https://github.com/dequelabs/axe-core
https://www.deque.com/products/axe/
https://github.com/dequelabs/axe-core-npm/tree/develop/packages/react
https://wave.webaim.org/extension/
https://www.paciellogroup.com/blog/2015/01/the-browser-accessibility-tree/


In some browsers we can easily view the accessibility information for each
element in the accessibility tree:

Using the Accessibility Inspector in Firefox
Using the Accessibility Inspector in Chrome
Using the Accessibility Inspector in OS X Safari

Screen readers

Testing with a screen reader should form part of your accessibility tests.

Please note that browser / screen reader combinations matter. It is
recommended that you test your application in the browser best suited to
your screen reader of choice.

Commonly Used Screen Readers

NVDA in Firefox

NonVisual Desktop Access or NVDA is an open source Windows screen
reader that is widely used.

Refer to the following guides on how to best use NVDA:

WebAIM - Using NVDA to Evaluate Web Accessibility
Deque - NVDA Keyboard Shortcuts

VoiceOver in Safari

VoiceOver is an integrated screen reader on Apple devices.

Refer to the following guides on how to activate and use VoiceOver:

WebAIM - Using VoiceOver to Evaluate Web Accessibility
Deque - VoiceOver for OS X Keyboard Shortcuts
Deque - VoiceOver for iOS Shortcuts

JAWS in Internet Explorer

https://developer.mozilla.org/en-US/docs/Tools/Accessibility_inspector
https://developers.google.com/web/tools/chrome-devtools/accessibility/reference#pane
https://developer.apple.com/library/content/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://www.nvaccess.org/
https://webaim.org/articles/nvda/
https://dequeuniversity.com/screenreaders/nvda-keyboard-shortcuts
https://webaim.org/articles/voiceover/
https://dequeuniversity.com/screenreaders/voiceover-keyboard-shortcuts
https://dequeuniversity.com/screenreaders/voiceover-ios-shortcuts


Job Access With Speech or JAWS, is a prolifically used screen reader on
Windows.

Refer to the following guides on how to best use JAWS:

WebAIM - Using JAWS to Evaluate Web Accessibility
Deque - JAWS Keyboard Shortcuts

Other Screen Readers

ChromeVox in Google Chrome

ChromeVox is an integrated screen reader on Chromebooks and is available
as an extension for Google Chrome.

Refer to the following guides on how best to use ChromeVox:

Google Chromebook Help - Use the Built-in Screen Reader
ChromeVox Classic Keyboard Shortcuts Reference

Code-Splitting

Bundling

Most React apps will have their files “bundled” using tools like Webpack,
Rollup or Browserify. Bundling is the process of following imported files
and merging them into a single file: a “bundle”. This bundle can then be
included on a webpage to load an entire app at once.

Example

App:

// app.js
import { add } from './math.js';

console.log(add(16, 26)); // 42

https://www.freedomscientific.com/Products/software/JAWS/
https://webaim.org/articles/jaws/
https://dequeuniversity.com/screenreaders/jaws-keyboard-shortcuts
https://www.chromevox.com/
https://chrome.google.com/webstore/detail/chromevox/kgejglhpjiefppelpmljglcjbhoiplfn?hl=en
https://support.google.com/chromebook/answer/7031755?hl=en
https://www.chromevox.com/keyboard_shortcuts.html
https://webpack.js.org/
https://rollupjs.org/
http://browserify.org/


Bundle:

Note:

Your bundles will end up looking a lot different than this.

If you’re using Create React App, Next.js, Gatsby, or a similar tool, you will
have a Webpack setup out of the box to bundle your app.

If you aren’t, you’ll need to set up bundling yourself. For example, see the
Installation and Getting Started guides on the Webpack docs.

Code Splitting

Bundling is great, but as your app grows, your bundle will grow too.
Especially if you are including large third-party libraries. You need to keep
an eye on the code you are including in your bundle so that you don’t
accidentally make it so large that your app takes a long time to load.

To avoid winding up with a large bundle, it’s good to get ahead of the
problem and start “splitting” your bundle. Code-Splitting is a feature
supported by bundlers like Webpack, Rollup and Browserify (via factor-
bundle) which can create multiple bundles that can be dynamically loaded at
runtime.

Code-splitting your app can help you “lazy-load” just the things that are
currently needed by the user, which can dramatically improve the
performance of your app. While you haven’t reduced the overall amount of

// math.js
export function add(a, b) {
 return a + b;
}

function add(a, b) {
 return a + b;
}

console.log(add(16, 26)); // 42

https://create-react-app.dev/
https://nextjs.org/
https://www.gatsbyjs.org/
https://webpack.js.org/guides/installation/
https://webpack.js.org/guides/getting-started/
https://webpack.js.org/guides/code-splitting/
https://rollupjs.org/guide/en/#code-splitting
https://github.com/browserify/factor-bundle


code in your app, you’ve avoided loading code that the user may never need,
and reduced the amount of code needed during the initial load.

import()

The best way to introduce code-splitting into your app is through the
dynamic import() syntax.

Before:

After:

When Webpack comes across this syntax, it automatically starts code-
splitting your app. If you’re using Create React App, this is already
configured for you and you can start using it immediately. It’s also supported
out of the box in Next.js.

If you’re setting up Webpack yourself, you’ll probably want to read
Webpack’s guide on code splitting. Your Webpack config should look
vaguely like this.

When using Babel, you’ll need to make sure that Babel can parse the
dynamic import syntax but is not transforming it. For that you will need
@babel/plugin-syntax-dynamic-import.

React.lazy

The React.lazy function lets you render a dynamic import as a regular
component.

Before:

import { add } from './math';

console.log(add(16, 26));

import("./math").then(math => {
 console.log(math.add(16, 26));
});

https://create-react-app.dev/docs/code-splitting/
https://nextjs.org/docs/advanced-features/dynamic-import
https://webpack.js.org/guides/code-splitting/
https://gist.github.com/gaearon/ca6e803f5c604d37468b0091d9959269
https://babeljs.io/
https://classic.yarnpkg.com/en/package/@babel/plugin-syntax-dynamic-import


After:

This will automatically load the bundle containing the OtherComponent
when this component is first rendered.

React.lazy takes a function that must call a dynamic import(). This must
return a Promise which resolves to a module with a default export
containing a React component.

The lazy component should then be rendered inside a Suspense component,
which allows us to show some fallback content (such as a loading indicator)
while we’re waiting for the lazy component to load.

The fallback prop accepts any React elements that you want to render
while waiting for the component to load. You can place the Suspense
component anywhere above the lazy component. You can even wrap
multiple lazy components with a single Suspense component.

import OtherComponent from './OtherComponent';

const OtherComponent = React.lazy(() => import('./OtherComponent

import React, { Suspense } from 'react';

const OtherComponent = React.lazy(() => import('./OtherComponent

function MyComponent() {
 return (
   <div>
     <Suspense fallback={<div>Loading...</div>}>
       <OtherComponent />
     </Suspense>
   </div>
 );
}

import React, { Suspense } from 'react';

const OtherComponent = React.lazy(() => import('./OtherComponent



Avoiding fallbacks

Any component may suspend as a result of rendering, even components that
were already shown to the user. In order for screen content to always be
consistent, if an already shown component suspends, React has to hide its
tree up to the closest <Suspense> boundary. However, from the user’s
perspective, this can be disorienting.

Consider this tab switcher:

const AnotherComponent = React.lazy(() => import('./AnotherCompon

function MyComponent() {
 return (
   <div>
     <Suspense fallback={<div>Loading...</div>}>
       <section>
         <OtherComponent />
         <AnotherComponent />
       </section>
     </Suspense>
   </div>
 );
}

import React, { Suspense } from 'react';
import Tabs from './Tabs';
import Glimmer from './Glimmer';

const Comments = React.lazy(() => import('./Comments'));
const Photos = React.lazy(() => import('./Photos'));

function MyComponent() {
 const [tab, setTab] = React.useState('photos');
 
 function handleTabSelect(tab) {
   setTab(tab);
 };

 return (



In this example, if tab gets changed from 'photos' to 'comments', but 
Comments suspends, the user will see a glimmer. This makes sense because
the user no longer wants to see Photos, the Comments component is not ready
to render anything, and React needs to keep the user experience consistent,
so it has no choice but to show the Glimmer above.

However, sometimes this user experience is not desirable. In particular, it is
sometimes better to show the “old” UI while the new UI is being prepared.
You can use the new startTransition API to make React do this:

Here, you tell React that setting tab to 'comments' is not an urgent update,
but is a transition that may take some time. React will then keep the old UI
in place and interactive, and will switch to showing <Comments /> when it is
ready. See Transitions for more info.

Error boundaries

If the other module fails to load (for example, due to network failure), it will
trigger an error. You can handle these errors to show a nice user experience
and manage recovery with Error Boundaries. Once you’ve created your
Error Boundary, you can use it anywhere above your lazy components to
display an error state when there’s a network error.

   <div>
     <Tabs onTabSelect={handleTabSelect} />
     <Suspense fallback={<Glimmer />}>
       {tab === 'photos' ? <Photos /> : <Comments />}
     </Suspense>
   </div>
 );
}

function handleTabSelect(tab) {
 startTransition(() => {
   setTab(tab);
 });
}

import React, { Suspense } from 'react';
import MyErrorBoundary from './MyErrorBoundary';



Route-based code splitting

Deciding where in your app to introduce code splitting can be a bit tricky.
You want to make sure you choose places that will split bundles evenly, but
won’t disrupt the user experience.

A good place to start is with routes. Most people on the web are used to page
transitions taking some amount of time to load. You also tend to be re-
rendering the entire page at once so your users are unlikely to be interacting
with other elements on the page at the same time.

Here’s an example of how to setup route-based code splitting into your app
using libraries like React Router with React.lazy.

const OtherComponent = React.lazy(() => import('./OtherComponent
const AnotherComponent = React.lazy(() => import('./AnotherCompon

const MyComponent = () => (
 <div>
   <MyErrorBoundary>
     <Suspense fallback={<div>Loading...</div>}>
       <section>
         <OtherComponent />
         <AnotherComponent />
       </section>
     </Suspense>
   </MyErrorBoundary>
 </div>
);

import React, { Suspense, lazy } from 'react';
import { BrowserRouter as Router, Routes, Route } from 'react-rou

const Home = lazy(() => import('./routes/Home'));
const About = lazy(() => import('./routes/About'));

const App = () => (
 <Router>
   <Suspense fallback={<div>Loading...</div>}>

https://reactrouter.com/


Named Exports

React.lazy currently only supports default exports. If the module you want
to import uses named exports, you can create an intermediate module that
reexports it as the default. This ensures that tree shaking keeps working and
that you don’t pull in unused components.

Context

Context provides a way to pass data through the component tree without
having to pass props down manually at every level.

In a typical React application, data is passed top-down (parent to child) via
props, but such usage can be cumbersome for certain types of props
(e.g. locale preference, UI theme) that are required by many components
within an application. Context provides a way to share values like these
between components without having to explicitly pass a prop through every
level of the tree.

When to Use Context

     <Routes>
       <Route path="/" element={<Home />} />
       <Route path="/about" element={<About />} />
     </Routes>
   </Suspense>
 </Router>
);

// ManyComponents.js
export const MyComponent = /* ... */;
export const MyUnusedComponent = /* ... */;

// MyComponent.js
export { MyComponent as default } from "./ManyComponents.js";

// MyApp.js
import React, { lazy } from 'react';
const MyComponent = lazy(() => import("./MyComponent.js"));



Before You Use Context
API

React.createContext
Context.Provider
Class.contextType
Context.Consumer
Context.displayName

Examples
Dynamic Context
Updating Context from a Nested Component
Consuming Multiple Contexts

Caveats
Legacy API

When to Use Context

Context is designed to share data that can be considered “global” for a tree
of React components, such as the current authenticated user, theme, or
preferred language. For example, in the code below we manually thread
through a “theme” prop in order to style the Button component:

embed:context/motivation-problem.js

Using context, we can avoid passing props through intermediate elements:

embed:context/motivation-solution.js

Before You Use Context

Context is primarily used when some data needs to be accessible by many
components at different nesting levels. Apply it sparingly because it makes
component reuse more difficult.

If you only want to avoid passing some props through many levels,
component composition is often a simpler solution than context.

For example, consider a Page component that passes a user and avatarSize
prop several levels down so that deeply nested Link and Avatar components



can read it:

It might feel redundant to pass down the user and avatarSize props through
many levels if in the end only the Avatar component really needs it. It’s also
annoying that whenever the Avatar component needs more props from the
top, you have to add them at all the intermediate levels too.

One way to solve this issue without context is to pass down the Avatar
component itself so that the intermediate components don’t need to know
about the user or avatarSize props:

<Page user={user} avatarSize={avatarSize} />
// ... which renders ...
<PageLayout user={user} avatarSize={avatarSize} />
// ... which renders ...
<NavigationBar user={user} avatarSize={avatarSize} />
// ... which renders ...
<Link href={user.permalink}>
 <Avatar user={user} size={avatarSize} />
</Link>

function Page(props) {
 const user = props.user;
 const userLink = (
   <Link href={user.permalink}>
     <Avatar user={user} size={props.avatarSize} />
   </Link>
 );
 return <PageLayout userLink={userLink} />;
}

// Now, we have:
<Page user={user} avatarSize={avatarSize} />
// ... which renders ...
<PageLayout userLink={...} />
// ... which renders ...
<NavigationBar userLink={...} />
// ... which renders ...
{props.userLink}



With this change, only the top-most Page component needs to know about
the Link and Avatar components’ use of user and avatarSize.

This inversion of control can make your code cleaner in many cases by
reducing the amount of props you need to pass through your application and
giving more control to the root components. Such inversion, however, isn’t
the right choice in every case; moving more complexity higher in the tree
makes those higher-level components more complicated and forces the
lower-level components to be more flexible than you may want.

You’re not limited to a single child for a component. You may pass multiple
children, or even have multiple separate “slots” for children, as documented
here:

This pattern is sufficient for many cases when you need to decouple a child
from its immediate parents. You can take it even further with render props if
the child needs to communicate with the parent before rendering.

However, sometimes the same data needs to be accessible by many
components in the tree, and at different nesting levels. Context lets you
“broadcast” such data, and changes to it, to all components below. Common

function Page(props) {
 const user = props.user;
 const content = <Feed user={user} />;
 const topBar = (
   <NavigationBar>
     <Link href={user.permalink}>
       <Avatar user={user} size={props.avatarSize} />
     </Link>
   </NavigationBar>
 );
 return (
   <PageLayout
     topBar={topBar}
     content={content}
   />
 );
}



examples where using context might be simpler than the alternatives include
managing the current locale, theme, or a data cache.

API

React.createContext

Creates a Context object. When React renders a component that subscribes
to this Context object it will read the current context value from the closest
matching Provider above it in the tree.

The defaultValue argument is only used when a component does not have
a matching Provider above it in the tree. This default value can be helpful for
testing components in isolation without wrapping them. Note: passing 
undefined as a Provider value does not cause consuming components to use 
defaultValue.

Context.Provider

Every Context object comes with a Provider React component that allows
consuming components to subscribe to context changes.

The Provider component accepts a value prop to be passed to consuming
components that are descendants of this Provider. One Provider can be
connected to many consumers. Providers can be nested to override values
deeper within the tree.

All consumers that are descendants of a Provider will re-render whenever
the Provider’s value prop changes. The propagation from Provider to its
descendant consumers (including .contextType and useContext) is not
subject to the shouldComponentUpdate method, so the consumer is updated
even when an ancestor component skips an update.

const MyContext = React.createContext(defaultValue);

<MyContext.Provider value={/* some value */}>



Changes are determined by comparing the new and old values using the
same algorithm as Object.is.

Note

The way changes are determined can cause some issues when passing
objects as value: see Caveats.

Class.contextType

The contextType property on a class can be assigned a Context object
created by React.createContext(). Using this property lets you consume
the nearest current value of that Context type using this.context. You can
reference this in any of the lifecycle methods including the render function.

Note:

You can only subscribe to a single context using this API. If you need
to read more than one see Consuming Multiple Contexts.

class MyClass extends React.Component {
 componentDidMount() {
   let value = this.context;
   /* perform a side-effect at mount using the value of MyContex
 }
 componentDidUpdate() {
   let value = this.context;
   /* ... */
 }
 componentWillUnmount() {
   let value = this.context;
   /* ... */
 }
 render() {
   let value = this.context;
   /* render something based on the value of MyContext */
 }
}
MyClass.contextType = MyContext;

file://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is#Description


If you are using the experimental public class fields syntax, you can use
a static class field to initialize your contextType.

Context.Consumer

A React component that subscribes to context changes. Using this
component lets you subscribe to a context within a function component.

Requires a function as a child. The function receives the current context
value and returns a React node. The value argument passed to the function
will be equal to the value prop of the closest Provider for this context above
in the tree. If there is no Provider for this context above, the value argument
will be equal to the defaultValue that was passed to createContext().

Note

For more information about the ‘function as a child’ pattern, see render
props.

Context.displayName

Context object accepts a displayName string property. React DevTools uses
this string to determine what to display for the context.

For example, the following component will appear as MyDisplayName in
the DevTools:

class MyClass extends React.Component {
 static contextType = MyContext;
 render() {
   let value = this.context;
   /* render something based on the value */
 }
}

<MyContext.Consumer>
 {value => /* render something based on the context value */}
</MyContext.Consumer>

https://babeljs.io/docs/plugins/transform-class-properties/


const MyContext = React.createContext(/* some value */); 
MyContext.displayName = 'MyDisplayName'; 
 
<MyContext.Provider> // "MyDisplayName.Provider" in DevTools 
<MyContext.Consumer> // "MyDisplayName.Consumer" in DevTools

Examples

Dynamic Context

A more complex example with dynamic values for the theme:

theme-context.js embed:context/theme-detailed-theme-context.js

themed-button.js embed:context/theme-detailed-themed-button.js

app.js embed:context/theme-detailed-app.js

Updating Context from a Nested Component

It is often necessary to update the context from a component that is nested
somewhere deeply in the component tree. In this case you can pass a
function down through the context to allow consumers to update the context:

theme-context.js embed:context/updating-nested-context-context.js

theme-toggler-button.js embed:context/updating-nested-context-

theme-toggler-button.js

app.js embed:context/updating-nested-context-app.js

Consuming Multiple Contexts

To keep context re-rendering fast, React needs to make each context
consumer a separate node in the tree.

embed:context/multiple-contexts.js



If two or more context values are often used together, you might want to
consider creating your own render prop component that provides both.

Caveats

Because context uses reference identity to determine when to re-render, there
are some gotchas that could trigger unintentional renders in consumers when
a provider’s parent re-renders. For example, the code below will re-render all
consumers every time the Provider re-renders because a new object is
always created for value:

embed:context/reference-caveats-problem.js

To get around this, lift the value into the parent’s state:

embed:context/reference-caveats-solution.js

Legacy API

Note

React previously shipped with an experimental context API. The old
API will be supported in all 16.x releases, but applications using it
should migrate to the new version. The legacy API will be removed in a
future major React version. Read the legacy context docs here.

Error Boundaries

In the past, JavaScript errors inside components used to corrupt React’s
internal state and cause it to emit cryptic errors on next renders. These errors
were always caused by an earlier error in the application code, but React did
not provide a way to handle them gracefully in components, and could not
recover from them.

Introducing Error Boundaries

file:///C:/docs/legacy-context.html
https://github.com/facebook/react/issues/4026
https://github.com/facebook/react/issues/6895
https://github.com/facebook/react/issues/8579


A JavaScript error in a part of the UI shouldn’t break the whole app. To
solve this problem for React users, React 16 introduces a new concept of an
“error boundary”.

Error boundaries are React components that catch JavaScript errors
anywhere in their child component tree, log those errors, and display a
fallback UI instead of the component tree that crashed. Error boundaries
catch errors during rendering, in lifecycle methods, and in constructors of
the whole tree below them.

Note

Error boundaries do not catch errors for:

Event handlers (learn more)
Asynchronous code (e.g. setTimeout or requestAnimationFrame
callbacks)
Server side rendering
Errors thrown in the error boundary itself (rather than its children)

A class component becomes an error boundary if it defines either (or both)
of the lifecycle methods static getDerivedStateFromError() or 
componentDidCatch(). Use static getDerivedStateFromError() to
render a fallback UI after an error has been thrown. Use 
componentDidCatch() to log error information.

class ErrorBoundary extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { hasError: false }; 
  } 
 
  static getDerivedStateFromError(error) { 
    // Update state so the next render will show the fallback 
UI. 
    return { hasError: true }; 
  } 
 
  componentDidCatch(error, errorInfo) { 
    // You can also log the error to an error reporting service 
    logErrorToMyService(error, errorInfo); 
  } 



 
  render() { 
    if (this.state.hasError) { 
      // You can render any custom fallback UI 
      return <h1>Something went wrong.</h1>; 
    } 
 
    return this.props.children;  
  } 
}

Then you can use it as a regular component:

Error boundaries work like a JavaScript catch {} block, but for
components. Only class components can be error boundaries. In practice,
most of the time you’ll want to declare an error boundary component once
and use it throughout your application.

Note that error boundaries only catch errors in the components below
them in the tree. An error boundary can’t catch an error within itself. If an
error boundary fails trying to render the error message, the error will
propagate to the closest error boundary above it. This, too, is similar to how
the catch {} block works in JavaScript.

Live Demo

Check out this example of declaring and using an error boundary.

Where to Place Error Boundaries

The granularity of error boundaries is up to you. You may wrap top-level
route components to display a “Something went wrong” message to the user,
just like how server-side frameworks often handle crashes. You may also
wrap individual widgets in an error boundary to protect them from crashing
the rest of the application.

<ErrorBoundary>
 <MyWidget />
</ErrorBoundary>

https://codepen.io/gaearon/pen/wqvxGa?editors=0010


New Behavior for Uncaught Errors

This change has an important implication. As of React 16, errors that were
not caught by any error boundary will result in unmounting of the
whole React component tree.

We debated this decision, but in our experience it is worse to leave corrupted
UI in place than to completely remove it. For example, in a product like
Messenger leaving the broken UI visible could lead to somebody sending a
message to the wrong person. Similarly, it is worse for a payments app to
display a wrong amount than to render nothing.

This change means that as you migrate to React 16, you will likely uncover
existing crashes in your application that have been unnoticed before. Adding
error boundaries lets you provide better user experience when something
goes wrong.

For example, Facebook Messenger wraps content of the sidebar, the info
panel, the conversation log, and the message input into separate error
boundaries. If some component in one of these UI areas crashes, the rest of
them remain interactive.

We also encourage you to use JS error reporting services (or build your own)
so that you can learn about unhandled exceptions as they happen in
production, and fix them.

Component Stack Traces

React 16 prints all errors that occurred during rendering to the console in
development, even if the application accidentally swallows them. In addition
to the error message and the JavaScript stack, it also provides component
stack traces. Now you can see where exactly in the component tree the
failure has happened:



You can also see the filenames and line numbers in the component stack
trace. This works by default in Create React App projects:

If you don’t use Create React App, you can add this plugin manually to your
Babel configuration. Note that it’s intended only for development and must
be disabled in production.

Note

Component names displayed in the stack traces depend on the 
Function.name property. If you support older browsers and devices
which may not yet provide this natively (e.g. IE 11), consider including
a Function.name polyfill in your bundled application, such as 
function.name-polyfill. Alternatively, you may explicitly set the 
displayName property on all your components.

How About try/catch?

try / catch is great but it only works for imperative code:

try {
 showButton();
} catch (error) {
 // ...
}

https://github.com/facebookincubator/create-react-app
https://www.npmjs.com/package/@babel/plugin-transform-react-jsx-source
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
https://github.com/JamesMGreene/Function.name


However, React components are declarative and specify what should be
rendered:

Error boundaries preserve the declarative nature of React, and behave as you
would expect. For example, even if an error occurs in a 
componentDidUpdate method caused by a setState somewhere deep in the
tree, it will still correctly propagate to the closest error boundary.

How About Event Handlers?

Error boundaries do not catch errors inside event handlers.

React doesn’t need error boundaries to recover from errors in event handlers.
Unlike the render method and lifecycle methods, the event handlers don’t
happen during rendering. So if they throw, React still knows what to display
on the screen.

If you need to catch an error inside an event handler, use the regular
JavaScript try / catch statement:

class MyComponent extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { error: null }; 
    this.handleClick = this.handleClick.bind(this); 
  } 
 
  handleClick() { 
    try { 
      // Do something that could throw 
    } catch (error) { 
      this.setState({ error }); 
    } 
  } 
 
  render() { 
    if (this.state.error) { 
      return <h1>Caught an error.</h1> 
    } 
    return <button onClick={this.handleClick}>Click Me</button> 

<Button />



  } 
}

Note that the above example is demonstrating regular JavaScript behavior
and doesn’t use error boundaries.

Naming Changes from React 15

React 15 included a very limited support for error boundaries under a
different method name: unstable_handleError. This method no longer
works, and you will need to change it to componentDidCatch in your code
starting from the first 16 beta release.

For this change, we’ve provided a codemod to automatically migrate your
code.

Forwarding Refs

Ref forwarding is a technique for automatically passing a ref through a
component to one of its children. This is typically not necessary for most
components in the application. However, it can be useful for some kinds of
components, especially in reusable component libraries. The most common
scenarios are described below.

Forwarding refs to DOM components

Consider a FancyButton component that renders the native button DOM
element: embed:forwarding-refs/fancy-button-simple.js

React components hide their implementation details, including their
rendered output. Other components using FancyButton usually will not
need to obtain a ref to the inner button DOM element. This is good because
it prevents components from relying on each other’s DOM structure too
much.

Although such encapsulation is desirable for application-level components
like FeedStory or Comment, it can be inconvenient for highly reusable “leaf”
components like FancyButton or MyTextInput. These components tend to

https://github.com/reactjs/react-codemod#error-boundaries


be used throughout the application in a similar manner as a regular DOM 
button and input, and accessing their DOM nodes may be unavoidable for
managing focus, selection, or animations.

Ref forwarding is an opt-in feature that lets some components take a ref
they receive, and pass it further down (in other words, “forward” it) to
a child.

In the example below, FancyButton uses React.forwardRef to obtain the 
ref passed to it, and then forward it to the DOM button that it renders:

embed:forwarding-refs/fancy-button-simple-ref.js

This way, components using FancyButton can get a ref to the underlying 
button DOM node and access it if necessary—just like if they used a DOM 
button directly.

Here is a step-by-step explanation of what happens in the above example:

1. We create a React ref by calling React.createRef and assign it to a ref
variable.

2. We pass our ref down to <FancyButton ref={ref}> by specifying it
as a JSX attribute.

3. React passes the ref to the (props, ref) => ... function inside 
forwardRef as a second argument.

4. We forward this ref argument down to <button ref={ref}> by
specifying it as a JSX attribute.

5. When the ref is attached, ref.current will point to the <button> DOM
node.

Note

The second ref argument only exists when you define a component
with React.forwardRef call. Regular function or class components
don’t receive the ref argument, and ref is not available in props either.

Ref forwarding is not limited to DOM components. You can forward
refs to class component instances, too.



Note for component library maintainers

When you start using forwardRef in a component library, you should
treat it as a breaking change and release a new major version of your
library. This is because your library likely has an observably different
behavior (such as what refs get assigned to, and what types are exported),
and this can break apps and other libraries that depend on the old behavior.

Conditionally applying React.forwardRef when it exists is also not
recommended for the same reasons: it changes how your library behaves and
can break your users’ apps when they upgrade React itself.

Forwarding refs in higher-order components

This technique can also be particularly useful with higher-order components
(also known as HOCs). Let’s start with an example HOC that logs
component props to the console: embed:forwarding-refs/log-props-

before.js

The “logProps” HOC passes all props through to the component it wraps, so
the rendered output will be the same. For example, we can use this HOC to
log all props that get passed to our “fancy button” component: 
embed:forwarding-refs/fancy-button.js

There is one caveat to the above example: refs will not get passed through.
That’s because ref is not a prop. Like key, it’s handled differently by React.
If you add a ref to a HOC, the ref will refer to the outermost container
component, not the wrapped component.

This means that refs intended for our FancyButton component will actually
be attached to the LogProps component: embed:forwarding-refs/fancy-
button-ref.js

Fortunately, we can explicitly forward refs to the inner FancyButton
component using the React.forwardRef API. React.forwardRef accepts a
render function that receives props and ref parameters and returns a React
node. For example: embed:forwarding-refs/log-props-after.js



Displaying a custom name in DevTools

React.forwardRef accepts a render function. React DevTools uses this
function to determine what to display for the ref forwarding component.

For example, the following component will appear as “ForwardRef” in the
DevTools:

embed:forwarding-refs/wrapped-component.js

If you name the render function, DevTools will also include its name
(e.g. “ForwardRef(myFunction)”):

embed:forwarding-refs/wrapped-component-with-function-name.js

You can even set the function’s displayName property to include the
component you’re wrapping:

embed:forwarding-refs/customized-display-name.js

Fragments

A common pattern in React is for a component to return multiple elements.
Fragments let you group a list of children without adding extra nodes to the
DOM.

There is also a new short syntax for declaring them.

Motivation

render() {
 return (
   <React.Fragment>
     <ChildA />
     <ChildB />
     <ChildC />
   </React.Fragment>
 );
}



A common pattern is for a component to return a list of children. Take this
example React snippet:

<Columns /> would need to return multiple <td> elements in order for the
rendered HTML to be valid. If a parent div was used inside the render() of 
<Columns />, then the resulting HTML will be invalid.

results in a <Table /> output of:

Fragments solve this problem.

class Table extends React.Component {
 render() {
   return (
     <table>
       <tr>
         <Columns />
       </tr>
     </table>
   );
 }
}

class Columns extends React.Component {
 render() {
   return (
     <div>
       <td>Hello</td>
       <td>World</td>
     </div>
   );
 }
}

<table>
 <tr>
   <div>
     <td>Hello</td>
     <td>World</td>
   </div>
 </tr>
</table>



Usage

class Columns extends React.Component { 
  render() { 
    return ( 
      <React.Fragment> 
        <td>Hello</td> 
        <td>World</td> 
      </React.Fragment> 
    ); 
  } 
}

which results in a correct <Table /> output of:

Short Syntax

There is a new, shorter syntax you can use for declaring fragments. It looks
like empty tags:

class Columns extends React.Component { 
  render() { 
    return ( 
      <> 
        <td>Hello</td> 
        <td>World</td> 
      </> 
    ); 
  } 
}

You can use <></> the same way you’d use any other element except that it
doesn’t support keys or attributes.

Keyed Fragments

<table>
 <tr>
   <td>Hello</td>
   <td>World</td>
 </tr>
</table>



Fragments declared with the explicit <React.Fragment> syntax may have
keys. A use case for this is mapping a collection to an array of fragments –
for example, to create a description list:

key is the only attribute that can be passed to Fragment. In the future, we
may add support for additional attributes, such as event handlers.

Live Demo

You can try out the new JSX fragment syntax with this CodePen.

Higher-Order Components

A higher-order component (HOC) is an advanced technique in React for
reusing component logic. HOCs are not part of the React API, per se. They
are a pattern that emerges from React’s compositional nature.

Concretely, a higher-order component is a function that takes a
component and returns a new component.

Whereas a component transforms props into UI, a higher-order component
transforms a component into another component.

function Glossary(props) {
 return (
   <dl>
     {props.items.map(item => (
       // Without the `key`, React will fire a key warning
       <React.Fragment key={item.id}>
         <dt>{item.term}</dt>
         <dd>{item.description}</dd>
       </React.Fragment>
     ))}
   </dl>
 );
}

const EnhancedComponent = higherOrderComponent(WrappedComponent);

https://codepen.io/reactjs/pen/VrEbjE?editors=1000


HOCs are common in third-party React libraries, such as Redux’s connect
and Relay’s createFragmentContainer.

In this document, we’ll discuss why higher-order components are useful, and
how to write your own.

Use HOCs For Cross-Cutting Concerns

Note

We previously recommended mixins as a way to handle cross-cutting
concerns. We’ve since realized that mixins create more trouble than
they are worth. Read more about why we’ve moved away from mixins
and how you can transition your existing components.

Components are the primary unit of code reuse in React. However, you’ll
find that some patterns aren’t a straightforward fit for traditional
components.

For example, say you have a CommentList component that subscribes to an
external data source to render a list of comments:

class CommentList extends React.Component {
 constructor(props) {
   super(props);
   this.handleChange = this.handleChange.bind(this);
   this.state = {
     // "DataSource" is some global data source
     comments: DataSource.getComments()
   };
 }

 componentDidMount() {
   // Subscribe to changes
   DataSource.addChangeListener(this.handleChange);
 }

 componentWillUnmount() {
   // Clean up listener
   DataSource.removeChangeListener(this.handleChange);

https://github.com/reduxjs/react-redux/blob/master/docs/api/connect.md#connect
https://relay.dev/docs/v10.1.3/fragment-container/#createfragmentcontainer
file:///C:/blog/2016/07/13/mixins-considered-harmful.html


Later, you write a component for subscribing to a single blog post, which
follows a similar pattern:

 }

 handleChange() {
   // Update component state whenever the data source changes
   this.setState({
     comments: DataSource.getComments()
   });
 }

 render() {
   return (
     <div>
       {this.state.comments.map((comment) => (
         <Comment comment={comment} key={comment.id} />
       ))}
     </div>
   );
 }
}

class BlogPost extends React.Component {
 constructor(props) {
   super(props);
   this.handleChange = this.handleChange.bind(this);
   this.state = {
     blogPost: DataSource.getBlogPost(props.id)
   };
 }

 componentDidMount() {
   DataSource.addChangeListener(this.handleChange);
 }

 componentWillUnmount() {
   DataSource.removeChangeListener(this.handleChange);
 }

 handleChange() {
   this.setState({



CommentList and BlogPost aren’t identical — they call different methods on
DataSource, and they render different output. But much of their
implementation is the same:

On mount, add a change listener to DataSource.
Inside the listener, call setState whenever the data source changes.
On unmount, remove the change listener.

You can imagine that in a large app, this same pattern of subscribing to 
DataSource and calling setState will occur over and over again. We want
an abstraction that allows us to define this logic in a single place and share it
across many components. This is where higher-order components excel.

We can write a function that creates components, like CommentList and 
BlogPost, that subscribe to DataSource. The function will accept as one of
its arguments a child component that receives the subscribed data as a prop.
Let’s call the function withSubscription:

The first parameter is the wrapped component. The second parameter
retrieves the data we’re interested in, given a DataSource and the current
props.

     blogPost: DataSource.getBlogPost(this.props.id)
   });
 }

 render() {
   return <TextBlock text={this.state.blogPost} />;
 }
}

const CommentListWithSubscription = withSubscription(
 CommentList,
 (DataSource) => DataSource.getComments()
);

const BlogPostWithSubscription = withSubscription(
 BlogPost,
 (DataSource, props) => DataSource.getBlogPost(props.id)
);



When CommentListWithSubscription and BlogPostWithSubscription are
rendered, CommentList and BlogPost will be passed a data prop with the
most current data retrieved from DataSource:

Note that a HOC doesn’t modify the input component, nor does it use
inheritance to copy its behavior. Rather, a HOC composes the original

// This function takes a component...
function withSubscription(WrappedComponent, selectData) {
 // ...and returns another component...
 return class extends React.Component {
   constructor(props) {
     super(props);
     this.handleChange = this.handleChange.bind(this);
     this.state = {
       data: selectData(DataSource, props)
     };
   }

   componentDidMount() {
     // ... that takes care of the subscription...
     DataSource.addChangeListener(this.handleChange);
   }

   componentWillUnmount() {
     DataSource.removeChangeListener(this.handleChange);
   }

   handleChange() {
     this.setState({
       data: selectData(DataSource, this.props)
     });
   }

   render() {
     // ... and renders the wrapped component with the fresh dat
     // Notice that we pass through any additional props
     return <WrappedComponent data={this.state.data} {...this.pr
   }
 };
}



component by wrapping it in a container component. A HOC is a pure
function with zero side-effects.

And that’s it! The wrapped component receives all the props of the
container, along with a new prop, data, which it uses to render its output.
The HOC isn’t concerned with how or why the data is used, and the wrapped
component isn’t concerned with where the data came from.

Because withSubscription is a normal function, you can add as many or as
few arguments as you like. For example, you may want to make the name of
the data prop configurable, to further isolate the HOC from the wrapped
component. Or you could accept an argument that configures 
shouldComponentUpdate, or one that configures the data source. These are
all possible because the HOC has full control over how the component is
defined.

Like components, the contract between withSubscription and the wrapped
component is entirely props-based. This makes it easy to swap one HOC for
a different one, as long as they provide the same props to the wrapped
component. This may be useful if you change data-fetching libraries, for
example.

Don’t Mutate the Original Component. Use Composition.

Resist the temptation to modify a component’s prototype (or otherwise
mutate it) inside a HOC.

function logProps(InputComponent) {
 InputComponent.prototype.componentDidUpdate = function(prevProp
   console.log('Current props: ', this.props);
   console.log('Previous props: ', prevProps);
 };
 // The fact that we're returning the original input is a hint t
 // been mutated.
 return InputComponent;
}

// EnhancedComponent will log whenever props are received
const EnhancedComponent = logProps(InputComponent);



There are a few problems with this. One is that the input component cannot
be reused separately from the enhanced component. More crucially, if you
apply another HOC to EnhancedComponent that also mutates 
componentDidUpdate, the first HOC’s functionality will be overridden! This
HOC also won’t work with function components, which do not have
lifecycle methods.

Mutating HOCs are a leaky abstraction—the consumer must know how they
are implemented in order to avoid conflicts with other HOCs.

Instead of mutation, HOCs should use composition, by wrapping the input
component in a container component:

This HOC has the same functionality as the mutating version while avoiding
the potential for clashes. It works equally well with class and function
components. And because it’s a pure function, it’s composable with other
HOCs, or even with itself.

You may have noticed similarities between HOCs and a pattern called
container components. Container components are part of a strategy of
separating responsibility between high-level and low-level concerns.
Containers manage things like subscriptions and state, and pass props to
components that handle things like rendering UI. HOCs use containers as
part of their implementation. You can think of HOCs as parameterized
container component definitions.

function logProps(WrappedComponent) {
 return class extends React.Component {
   componentDidUpdate(prevProps) {
     console.log('Current props: ', this.props);
     console.log('Previous props: ', prevProps);
   }
   render() {
     // Wraps the input component in a container, without mutati
     return <WrappedComponent {...this.props} />;
   }
 }
}



Convention: Pass Unrelated Props Through to the Wrapped
Component

HOCs add features to a component. They shouldn’t drastically alter its
contract. It’s expected that the component returned from a HOC has a similar
interface to the wrapped component.

HOCs should pass through props that are unrelated to its specific concern.
Most HOCs contain a render method that looks something like this:

This convention helps ensure that HOCs are as flexible and reusable as
possible.

Convention: Maximizing Composability

Not all HOCs look the same. Sometimes they accept only a single argument,
the wrapped component:

render() {
 // Filter out extra props that are specific to this HOC and sho
 // passed through
 const { extraProp, ...passThroughProps } = this.props;

 // Inject props into the wrapped component. These are usually s
 // instance methods.
 const injectedProp = someStateOrInstanceMethod;

 // Pass props to wrapped component
 return (
   <WrappedComponent
     injectedProp={injectedProp}
     {...passThroughProps}
   />
 );
}

const NavbarWithRouter = withRouter(Navbar);



Usually, HOCs accept additional arguments. In this example from Relay, a
config object is used to specify a component’s data dependencies:

The most common signature for HOCs looks like this:

What?! If you break it apart, it’s easier to see what’s going on.

In other words, connect is a higher-order function that returns a higher-order
component!

This form may seem confusing or unnecessary, but it has a useful property.
Single-argument HOCs like the one returned by the connect function have
the signature Component => Component. Functions whose output type is the
same as its input type are really easy to compose together.

const CommentWithRelay = Relay.createContainer(Comment, config);

// React Redux's `connect`
const ConnectedComment = connect(commentSelector, commentActions)

// connect is a function that returns another function
const enhance = connect(commentListSelector, commentListActions);
// The returned function is a HOC, which returns a component that
// to the Redux store
const ConnectedComment = enhance(CommentList);

// Instead of doing this...
const EnhancedComponent = withRouter(connect(commentSelector)(Wra

// ... you can use a function composition utility
// compose(f, g, h) is the same as (...args) => f(g(h(...args)))
const enhance = compose(
 // These are both single-argument HOCs
 withRouter,
 connect(commentSelector)
)
const EnhancedComponent = enhance(WrappedComponent)



(This same property also allows connect and other enhancer-style HOCs to
be used as decorators, an experimental JavaScript proposal.)

The compose utility function is provided by many third-party libraries
including lodash (as lodash.flowRight), Redux, and Ramda.

Convention: Wrap the Display Name for Easy Debugging

The container components created by HOCs show up in the React Developer
Tools like any other component. To ease debugging, choose a display name
that communicates that it’s the result of a HOC.

The most common technique is to wrap the display name of the wrapped
component. So if your higher-order component is named withSubscription,
and the wrapped component’s display name is CommentList, use the display
name WithSubscription(CommentList):

Caveats

Higher-order components come with a few caveats that aren’t immediately
obvious if you’re new to React.

Don’t Use HOCs Inside the render Method

React’s diffing algorithm (called Reconciliation) uses component identity to
determine whether it should update the existing subtree or throw it away and
mount a new one. If the component returned from render is identical (===)
to the component from the previous render, React recursively updates the

function withSubscription(WrappedComponent) {
 class WithSubscription extends React.Component {/* ... */}
 WithSubscription.displayName = `WithSubscription(${getDisplayNa
 return WithSubscription;
}

function getDisplayName(WrappedComponent) {
 return WrappedComponent.displayName || WrappedComponent.name |
}

https://lodash.com/docs/#flowRight
https://redux.js.org/api/compose
https://ramdajs.com/docs/#compose
https://github.com/facebook/react/tree/main/packages/react-devtools


subtree by diffing it with the new one. If they’re not equal, the previous
subtree is unmounted completely.

Normally, you shouldn’t need to think about this. But it matters for HOCs
because it means you can’t apply a HOC to a component within the render
method of a component:

The problem here isn’t just about performance — remounting a component
causes the state of that component and all of its children to be lost.

Instead, apply HOCs outside the component definition so that the resulting
component is created only once. Then, its identity will be consistent across
renders. This is usually what you want, anyway.

In those rare cases where you need to apply a HOC dynamically, you can
also do it inside a component’s lifecycle methods or its constructor.

Static Methods Must Be Copied Over

Sometimes it’s useful to define a static method on a React component. For
example, Relay containers expose a static method getFragment to facilitate
the composition of GraphQL fragments.

When you apply a HOC to a component, though, the original component is
wrapped with a container component. That means the new component does
not have any of the static methods of the original component.

render() {
 // A new version of EnhancedComponent is created on every rende
 // EnhancedComponent1 !== EnhancedComponent2
 const EnhancedComponent = enhance(MyComponent);
 // That causes the entire subtree to unmount/remount each time
 return <EnhancedComponent />;
}

// Define a static method
WrappedComponent.staticMethod = function() {/*...*/}
// Now apply a HOC
const EnhancedComponent = enhance(WrappedComponent);



To solve this, you could copy the methods onto the container before
returning it:

However, this requires you to know exactly which methods need to be
copied. You can use hoist-non-react-statics to automatically copy all non-
React static methods:

Another possible solution is to export the static method separately from the
component itself.

Refs Aren’t Passed Through

// The enhanced component has no static method
typeof EnhancedComponent.staticMethod === 'undefined' // true

function enhance(WrappedComponent) {
 class Enhance extends React.Component {/*...*/}
 // Must know exactly which method(s) to copy :(
 Enhance.staticMethod = WrappedComponent.staticMethod;
 return Enhance;
}

import hoistNonReactStatic from 'hoist-non-react-statics';
function enhance(WrappedComponent) {
 class Enhance extends React.Component {/*...*/}
 hoistNonReactStatic(Enhance, WrappedComponent);
 return Enhance;
}

// Instead of...
MyComponent.someFunction = someFunction;
export default MyComponent;

// ...export the method separately...
export { someFunction };

// ...and in the consuming module, import both
import MyComponent, { someFunction } from './MyComponent.js';

https://github.com/mridgway/hoist-non-react-statics


While the convention for higher-order components is to pass through all
props to the wrapped component, this does not work for refs. That’s because 
ref is not really a prop — like key, it’s handled specially by React. If you
add a ref to an element whose component is the result of a HOC, the ref
refers to an instance of the outermost container component, not the wrapped
component.

The solution for this problem is to use the React.forwardRef API
(introduced with React 16.3). Learn more about it in the forwarding refs
section.

Integrating with Other Libraries

React can be used in any web application. It can be embedded in other
applications and, with a little care, other applications can be embedded in
React. This guide will examine some of the more common use cases,
focusing on integration with jQuery and Backbone, but the same ideas can
be applied to integrating components with any existing code.

Integrating with DOM Manipulation Plugins

React is unaware of changes made to the DOM outside of React. It
determines updates based on its own internal representation, and if the same
DOM nodes are manipulated by another library, React gets confused and has
no way to recover.

This does not mean it is impossible or even necessarily difficult to combine
React with other ways of affecting the DOM, you just have to be mindful of
what each is doing.

The easiest way to avoid conflicts is to prevent the React component from
updating. You can do this by rendering elements that React has no reason to
update, like an empty <div />.

How to Approach the Problem

To demonstrate this, let’s sketch out a wrapper for a generic jQuery plugin.

https://jquery.com/
https://backbonejs.org/


We will attach a ref to the root DOM element. Inside componentDidMount,
we will get a reference to it so we can pass it to the jQuery plugin.

To prevent React from touching the DOM after mounting, we will return an
empty <div /> from the render() method. The <div /> element has no
properties or children, so React has no reason to update it, leaving the
jQuery plugin free to manage that part of the DOM:

class SomePlugin extends React.Component { 
  componentDidMount() { 
    this.$el = $(this.el); 
    this.$el.somePlugin(); 
  } 
 
  componentWillUnmount() { 
    this.$el.somePlugin('destroy'); 
  } 
 
  render() { 
    return <div ref={el => this.el = el} />; 
  } 
}

Note that we defined both componentDidMount and componentWillUnmount
lifecycle methods. Many jQuery plugins attach event listeners to the DOM
so it’s important to detach them in componentWillUnmount. If the plugin
does not provide a method for cleanup, you will probably have to provide
your own, remembering to remove any event listeners the plugin registered
to prevent memory leaks.

Integrating with jQuery Chosen Plugin

For a more concrete example of these concepts, let’s write a minimal
wrapper for the plugin Chosen, which augments <select> inputs.

Note:

Just because it’s possible, doesn’t mean that it’s the best approach for
React apps. We encourage you to use React components when you can.
React components are easier to reuse in React applications, and often
provide more control over their behavior and appearance.

https://harvesthq.github.io/chosen/


First, let’s look at what Chosen does to the DOM.

If you call it on a <select> DOM node, it reads the attributes off of the
original DOM node, hides it with an inline style, and then appends a separate
DOM node with its own visual representation right after the <select>. Then
it fires jQuery events to notify us about the changes.

Let’s say that this is the API we’re striving for with our <Chosen> wrapper
React component:

We will implement it as an uncontrolled component for simplicity.

First, we will create an empty component with a render() method where we
return <select> wrapped in a <div>:

class Chosen extends React.Component { 
  render() { 
    return ( 
      <div> 
        <select className="Chosen-select" ref={el => this.el = 
el}> 
          {this.props.children} 
        </select> 
      </div> 
    ); 
  } 
}

Notice how we wrapped <select> in an extra <div>. This is necessary
because Chosen will append another DOM element right after the <select>
node we passed to it. However, as far as React is concerned, <div> always
only has a single child. This is how we ensure that React updates won’t

function Example() {
 return (
   <Chosen onChange={value => console.log(value)}>
     <option>vanilla</option>
     <option>chocolate</option>
     <option>strawberry</option>
   </Chosen>
 );
}



conflict with the extra DOM node appended by Chosen. It is important that
if you modify the DOM outside of React flow, you must ensure React
doesn’t have a reason to touch those DOM nodes.

Next, we will implement the lifecycle methods. We need to initialize Chosen
with the ref to the <select> node in componentDidMount, and tear it down in
componentWillUnmount:

componentDidMount() { 
  this.$el = $(this.el); 
  this.$el.chosen(); 
} 
 
componentWillUnmount() { 
  this.$el.chosen('destroy'); 
}

Try it on CodePen

Note that React assigns no special meaning to the this.el field. It only
works because we have previously assigned this field from a ref in the 
render() method:

This is enough to get our component to render, but we also want to be
notified about the value changes. To do this, we will subscribe to the jQuery 
change event on the <select> managed by Chosen.

We won’t pass this.props.onChange directly to Chosen because
component’s props might change over time, and that includes event handlers.
Instead, we will declare a handleChange() method that calls 
this.props.onChange, and subscribe it to the jQuery change event:

componentDidMount() { 
  this.$el = $(this.el); 
  this.$el.chosen(); 
 
  this.handleChange = this.handleChange.bind(this); 
  this.$el.on('change', this.handleChange); 
} 
 

<select className="Chosen-select" ref={el => this.el = el}>

https://codepen.io/gaearon/pen/qmqeQx?editors=0010


componentWillUnmount() { 
  this.$el.off('change', this.handleChange); 
  this.$el.chosen('destroy'); 
} 
 
handleChange(e) { 
  this.props.onChange(e.target.value); 
}

Try it on CodePen

Finally, there is one more thing left to do. In React, props can change over
time. For example, the <Chosen> component can get different children if
parent component’s state changes. This means that at integration points it is
important that we manually update the DOM in response to prop updates,
since we no longer let React manage the DOM for us.

Chosen’s documentation suggests that we can use jQuery trigger() API to
notify it about changes to the original DOM element. We will let React take
care of updating this.props.children inside <select>, but we will also
add a componentDidUpdate() lifecycle method that notifies Chosen about
changes in the children list:

componentDidUpdate(prevProps) { 
  if (prevProps.children !== this.props.children) { 
    this.$el.trigger("chosen:updated"); 
  } 
}

This way, Chosen will know to update its DOM element when the <select>
children managed by React change.

The complete implementation of the Chosen component looks like this:

class Chosen extends React.Component {
 componentDidMount() {
   this.$el = $(this.el);
   this.$el.chosen();

   this.handleChange = this.handleChange.bind(this);
   this.$el.on('change', this.handleChange);
 }

https://codepen.io/gaearon/pen/bWgbeE?editors=0010


Try it on CodePen

Integrating with Other View Libraries

React can be embedded into other applications thanks to the flexibility of 
createRoot().

Although React is commonly used at startup to load a single root React
component into the DOM, createRoot() can also be called multiple times
for independent parts of the UI which can be as small as a button, or as large
as an app.

 
 componentDidUpdate(prevProps) {
   if (prevProps.children !== this.props.children) {
     this.$el.trigger("chosen:updated");
   }
 }

 componentWillUnmount() {
   this.$el.off('change', this.handleChange);
   this.$el.chosen('destroy');
 }
 
 handleChange(e) {
   this.props.onChange(e.target.value);
 }

 render() {
   return (
     <div>
       <select className="Chosen-select" ref={el => this.el = el
         {this.props.children}
       </select>
     </div>
   );
 }
}

https://codepen.io/gaearon/pen/xdgKOz?editors=0010


In fact, this is exactly how React is used at Facebook. This lets us write
applications in React piece by piece, and combine them with our existing
server-generated templates and other client-side code.

Replacing String-Based Rendering with React

A common pattern in older web applications is to describe chunks of the
DOM as a string and insert it into the DOM like so: $el.html(htmlString).
These points in a codebase are perfect for introducing React. Just rewrite the
string based rendering as a React component.

So the following jQuery implementation…

…could be rewritten using a React component:

From here you could start moving more logic into the component and begin
adopting more common React practices. For example, in components it is
best not to rely on IDs because the same component can be rendered
multiple times. Instead, we will use the React event system and register the
click handler directly on the React <button> element:

function Button(props) { 
  return <button onClick={props.onClick}>Say Hello</button>; 
} 
 
function HelloButton() { 
  function handleClick() { 
    alert('Hello!'); 

$('#container').html('<button id="btn">Say Hello</button>');
$('#btn').click(function() {
 alert('Hello!');
});

function Button() {
 return <button id="btn">Say Hello</button>;
}

$('#btn').click(function() {
 alert('Hello!');
});



  } 
  return <Button onClick={handleClick} />; 
}

Try it on CodePen

You can have as many such isolated components as you like, and use 
ReactDOM.createRoot() to render them to different DOM containers.
Gradually, as you convert more of your app to React, you will be able to
combine them into larger components, and move some of the 
ReactDOM.createRoot() calls up the hierarchy.

Embedding React in a Backbone View

Backbone views typically use HTML strings, or string-producing template
functions, to create the content for their DOM elements. This process, too,
can be replaced with rendering a React component.

Below, we will create a Backbone view called ParagraphView. It will
override Backbone’s render() function to render a React <Paragraph>
component into the DOM element provided by Backbone (this.el). Here,
too, we are using ReactDOM.createRoot():

function Paragraph(props) { 
  return <p>{props.text}</p>; 
} 
 
const ParagraphView = Backbone.View.extend({ 
  initialize(options) { 
    this.reactRoot = ReactDOM.createRoot(this.el); 
  }, 
  render() { 
    const text = this.model.get('text'); 
    this.reactRoot.render(<Paragraph text={text} />); 
    return this; 
  }, 
  remove() { 
    this.reactRoot.unmount(); 
    Backbone.View.prototype.remove.call(this); 
  } 
});

https://codepen.io/gaearon/pen/RVKbvW?editors=1010
https://backbonejs.org/


Try it on CodePen

It is important that we also call root.unmount() in the remove method so
that React unregisters event handlers and other resources associated with the
component tree when it is detached.

When a component is removed from within a React tree, the cleanup is
performed automatically, but because we are removing the entire tree by
hand, we must call this method.

Integrating with Model Layers

While it is generally recommended to use unidirectional data flow such as
React state, Flux, or Redux, React components can use a model layer from
other frameworks and libraries.

Using Backbone Models in React Components

The simplest way to consume Backbone models and collections from a
React component is to listen to the various change events and manually force
an update.

Components responsible for rendering models would listen to 'change'
events, while components responsible for rendering collections would listen
for 'add' and 'remove' events. In both cases, call this.forceUpdate() to
rerender the component with the new data.

In the example below, the List component renders a Backbone collection,
using the Item component to render individual items.

class Item extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleChange = this.handleChange.bind(this); 
  } 
 
  handleChange() { 
    this.forceUpdate(); 
  } 
 

https://codepen.io/gaearon/pen/gWgOYL?editors=0010
https://facebook.github.io/flux/
https://redux.js.org/
https://backbonejs.org/


  componentDidMount() { 
    this.props.model.on('change', this.handleChange); 
  } 
 
  componentWillUnmount() { 
    this.props.model.off('change', this.handleChange); 
  } 
 
  render() { 
    return <li>{this.props.model.get('text')}</li>; 
  } 
} 
 
class List extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleChange = this.handleChange.bind(this); 
  } 
 
  handleChange() { 
    this.forceUpdate(); 
  } 
 
  componentDidMount() { 
    this.props.collection.on('add', 'remove', 
this.handleChange); 
  } 
 
  componentWillUnmount() { 
    this.props.collection.off('add', 'remove', 
this.handleChange); 
  } 
 
  render() { 
    return ( 
      <ul> 
        {this.props.collection.map(model => ( 
          <Item key={model.cid} model={model} /> 
        ))} 
      </ul> 
    ); 
  } 
}

Try it on CodePen

Extracting Data from Backbone Models

https://codepen.io/gaearon/pen/GmrREm?editors=0010


The approach above requires your React components to be aware of the
Backbone models and collections. If you later plan to migrate to another data
management solution, you might want to concentrate the knowledge about
Backbone in as few parts of the code as possible.

One solution to this is to extract the model’s attributes as plain data
whenever it changes, and keep this logic in a single place. The following is a
higher-order component that extracts all attributes of a Backbone model into
state, passing the data to the wrapped component.

This way, only the higher-order component needs to know about Backbone
model internals, and most components in the app can stay agnostic of
Backbone.

In the example below, we will make a copy of the model’s attributes to form
the initial state. We subscribe to the change event (and unsubscribe on
unmounting), and when it happens, we update the state with the model’s
current attributes. Finally, we make sure that if the model prop itself changes,
we don’t forget to unsubscribe from the old model, and subscribe to the new
one.

Note that this example is not meant to be exhaustive with regards to working
with Backbone, but it should give you an idea for how to approach this in a
generic way:

function connectToBackboneModel(WrappedComponent) { 
  return class BackboneComponent extends React.Component { 
    constructor(props) { 
      super(props); 
      this.state = Object.assign({}, props.model.attributes); 
      this.handleChange = this.handleChange.bind(this); 
    } 
 
    componentDidMount() { 
      this.props.model.on('change', this.handleChange); 
    } 
 
    componentWillReceiveProps(nextProps) { 
      this.setState(Object.assign({}, 
nextProps.model.attributes)); 
      if (nextProps.model !== this.props.model) { 
        this.props.model.off('change', this.handleChange); 



        nextProps.model.on('change', this.handleChange); 
      } 
    } 
 
    componentWillUnmount() { 
      this.props.model.off('change', this.handleChange); 
    } 
 
    handleChange(model) { 
      this.setState(model.changedAttributes()); 
    } 
 
    render() { 
      const propsExceptModel = Object.assign({}, this.props); 
      delete propsExceptModel.model; 
      return <WrappedComponent {...propsExceptModel} 
{...this.state} />; 
    } 
  } 
}

To demonstrate how to use it, we will connect a NameInput React component
to a Backbone model, and update its firstName attribute every time the
input changes:

function NameInput(props) { 
  return ( 
    <p> 
      <input value={props.firstName} onChange=
{props.handleChange} /> 
      <br /> 
      My name is {props.firstName}. 
    </p> 
  ); 
} 
 
const BackboneNameInput = connectToBackboneModel(NameInput); 
 
function Example(props) { 
  function handleChange(e) { 
    props.model.set('firstName', e.target.value); 
  } 
 
  return ( 
    <BackboneNameInput 
      model={props.model} 
      handleChange={handleChange} 



    /> 
  ); 
} 
 
const model = new Backbone.Model({ firstName: 'Frodo' }); 
const root = 
ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Example model={model} />);

Try it on CodePen

This technique is not limited to Backbone. You can use React with any
model library by subscribing to its changes in the lifecycle methods and,
optionally, copying the data into the local React state.

JSX In Depth

Fundamentally, JSX just provides syntactic sugar for the 
React.createElement(component, props, ...children) function. The
JSX code:

compiles into:

You can also use the self-closing form of the tag if there are no children. So:

compiles into:

<MyButton color="blue" shadowSize={2}>
 Click Me
</MyButton>

React.createElement(
 MyButton,
 {color: 'blue', shadowSize: 2},
 'Click Me'
)

<div className="sidebar" />

React.createElement(
 'div',

https://codepen.io/gaearon/pen/PmWwwa?editors=0010


If you want to test out how some specific JSX is converted into JavaScript,
you can try out the online Babel compiler.

Specifying The React Element Type

The first part of a JSX tag determines the type of the React element.

Capitalized types indicate that the JSX tag is referring to a React component.
These tags get compiled into a direct reference to the named variable, so if
you use the JSX <Foo /> expression, Foo must be in scope.

React Must Be in Scope

Since JSX compiles into calls to React.createElement, the React library
must also always be in scope from your JSX code.

For example, both of the imports are necessary in this code, even though 
React and CustomButton are not directly referenced from JavaScript:

import React from 'react'; 
import CustomButton from './CustomButton'; 
 
function WarningButton() { 
  // return React.createElement(CustomButton, {color: 'red'}, 
null); 
  return <CustomButton color="red" />; 
}

If you don’t use a JavaScript bundler and loaded React from a <script> tag,
it is already in scope as the React global.

Using Dot Notation for JSX Type

You can also refer to a React component using dot-notation from within
JSX. This is convenient if you have a single module that exports many React

 {className: 'sidebar'}
)

babel://jsx-simple-example


components. For example, if MyComponents.DatePicker is a component,
you can use it directly from JSX with:

import React from 'react'; 
 
const MyComponents = { 
  DatePicker: function DatePicker(props) { 
    return <div>Imagine a {props.color} datepicker here.</div>; 
  } 
} 
 
function BlueDatePicker() { 
  return <MyComponents.DatePicker color="blue" />; 
}

User-Defined Components Must Be Capitalized

When an element type starts with a lowercase letter, it refers to a built-in
component like <div> or <span> and results in a string 'div' or 'span'
passed to React.createElement. Types that start with a capital letter like 
<Foo /> compile to React.createElement(Foo) and correspond to a
component defined or imported in your JavaScript file.

We recommend naming components with a capital letter. If you do have a
component that starts with a lowercase letter, assign it to a capitalized
variable before using it in JSX.

For example, this code will not run as expected:

import React from 'react'; 
 
// Wrong! This is a component and should have been capitalized: 
function hello(props) { 
  // Correct! This use of <div> is legitimate because div is a 
valid HTML tag: 
  return <div>Hello {props.toWhat}</div>; 
} 
 
function HelloWorld() { 
  // Wrong! React thinks <hello /> is an HTML tag because it's 
not capitalized: 
  return <hello toWhat="World" />; 
}



To fix this, we will rename hello to Hello and use <Hello /> when
referring to it:

import React from 'react'; 
 
// Correct! This is a component and should be capitalized: 
function Hello(props) { 
  // Correct! This use of <div> is legitimate because div is a 
valid HTML tag: 
  return <div>Hello {props.toWhat}</div>; 
} 
 
function HelloWorld() { 
  // Correct! React knows <Hello /> is a component because it's 
capitalized. 
  return <Hello toWhat="World" />; 
}

Choosing the Type at Runtime

You cannot use a general expression as the React element type. If you do
want to use a general expression to indicate the type of the element, just
assign it to a capitalized variable first. This often comes up when you want
to render a different component based on a prop:

import React from 'react'; 
import { PhotoStory, VideoStory } from './stories'; 
 
const components = { 
  photo: PhotoStory, 
  video: VideoStory 
}; 
 
function Story(props) { 
  // Wrong! JSX type can't be an expression. 
  return <components[props.storyType] story={props.story} />; 
}

To fix this, we will assign the type to a capitalized variable first:

import React from 'react'; 
import { PhotoStory, VideoStory } from './stories'; 
 
const components = { 



  photo: PhotoStory, 
  video: VideoStory 
}; 
 
function Story(props) { 
  // Correct! JSX type can be a capitalized variable. 
  const SpecificStory = components[props.storyType]; 
  return <SpecificStory story={props.story} />; 
}

Props in JSX

There are several different ways to specify props in JSX.

JavaScript Expressions as Props

You can pass any JavaScript expression as a prop, by surrounding it with {}.
For example, in this JSX:

For MyComponent, the value of props.foo will be 10 because the expression 
1 + 2 + 3 + 4 gets evaluated.

if statements and for loops are not expressions in JavaScript, so they can’t
be used in JSX directly. Instead, you can put these in the surrounding code.
For example:

function NumberDescriber(props) { 
  let description; 
  if (props.number % 2 == 0) { 
    description = <strong>even</strong>; 
  } else { 
    description = <i>odd</i>; 
  } 
  return <div>{props.number} is an {description} number</div>; 
}

You can learn more about conditional rendering and loops in the
corresponding sections.

String Literals

<MyComponent foo={1 + 2 + 3 + 4} />



You can pass a string literal as a prop. These two JSX expressions are
equivalent:

When you pass a string literal, its value is HTML-unescaped. So these two
JSX expressions are equivalent:

This behavior is usually not relevant. It’s only mentioned here for
completeness.

Props Default to “True”

If you pass no value for a prop, it defaults to true. These two JSX
expressions are equivalent:

In general, we don’t recommend not passing a value for a prop, because it
can be confused with the ES6 object shorthand {foo} which is short for 
{foo: foo} rather than {foo: true}. This behavior is just there so that it
matches the behavior of HTML.

Spread Attributes

If you already have props as an object, and you want to pass it in JSX, you
can use ... as a “spread” syntax to pass the whole props object. These two
components are equivalent:

function App1() { 
  return <Greeting firstName="Ben" lastName="Hector" />; 

<MyComponent message="hello world" />

<MyComponent message={'hello world'} />

<MyComponent message="&lt;3" />

<MyComponent message={'<3'} />

<MyTextBox autocomplete />

<MyTextBox autocomplete={true} />

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer#New_notations_in_ECMAScript_2015


} 
 
function App2() { 
  const props = {firstName: 'Ben', lastName: 'Hector'}; 
  return <Greeting {...props} />; 
}

You can also pick specific props that your component will consume while
passing all other props using the spread syntax.

const Button = props => { 
  const { kind, ...other } = props; 
  const className = kind === "primary" ? "PrimaryButton" : 
"SecondaryButton"; 
  return <button className={className} {...other} />; 
}; 
 
const App = () => { 
  return ( 
    <div> 
      <Button kind="primary" onClick={() => 
console.log("clicked!")}> 
        Hello World! 
      </Button> 
    </div> 
  ); 
};

In the example above, the kind prop is safely consumed and is not passed on
to the <button> element in the DOM. All other props are passed via the 
...other object making this component really flexible. You can see that it
passes an onClick and children props.

Spread attributes can be useful but they also make it easy to pass
unnecessary props to components that don’t care about them or to pass
invalid HTML attributes to the DOM. We recommend using this syntax
sparingly.

Children in JSX

In JSX expressions that contain both an opening tag and a closing tag, the
content between those tags is passed as a special prop: props.children.
There are several different ways to pass children:



String Literals

You can put a string between the opening and closing tags and 
props.children will just be that string. This is useful for many of the built-
in HTML elements. For example:

This is valid JSX, and props.children in MyComponent will simply be the
string "Hello world!". HTML is unescaped, so you can generally write JSX
just like you would write HTML in this way:

JSX removes whitespace at the beginning and ending of a line. It also
removes blank lines. New lines adjacent to tags are removed; new lines that
occur in the middle of string literals are condensed into a single space. So
these all render to the same thing:

JSX Children

You can provide more JSX elements as the children. This is useful for
displaying nested components:

<MyComponent>Hello world!</MyComponent>

<div>This is valid HTML &amp; JSX at the same time.</div>

<div>Hello World</div>

<div>
 Hello World
</div>

<div>
 Hello
 World
</div>

<div>

 Hello World
</div>



You can mix together different types of children, so you can use string
literals together with JSX children. This is another way in which JSX is like
HTML, so that this is both valid JSX and valid HTML:

A React component can also return an array of elements:

JavaScript Expressions as Children

You can pass any JavaScript expression as children, by enclosing it within 
{}. For example, these expressions are equivalent:

This is often useful for rendering a list of JSX expressions of arbitrary
length. For example, this renders an HTML list:

<MyContainer>
 <MyFirstComponent />
 <MySecondComponent />
</MyContainer>

<div>
 Here is a list:
 <ul>
   <li>Item 1</li>
   <li>Item 2</li>
 </ul>
</div>

render() {
 // No need to wrap list items in an extra element!
 return [
   // Don't forget the keys :)
   <li key="A">First item</li>,
   <li key="B">Second item</li>,
   <li key="C">Third item</li>,
 ];
}

<MyComponent>foo</MyComponent>

<MyComponent>{'foo'}</MyComponent>



function Item(props) { 
  return <li>{props.message}</li>; 
} 
 
function TodoList() { 
  const todos = ['finish doc', 'submit pr', 'nag dan to 
review']; 
  return ( 
    <ul> 
      {todos.map((message) => <Item key={message} message=
{message} />)} 
    </ul> 
  ); 
}

JavaScript expressions can be mixed with other types of children. This is
often useful in lieu of string templates:

function Hello(props) { 
  return <div>Hello {props.addressee}!</div>; 
}

Functions as Children

Normally, JavaScript expressions inserted in JSX will evaluate to a string, a
React element, or a list of those things. However, props.children works
just like any other prop in that it can pass any sort of data, not just the sorts
that React knows how to render. For example, if you have a custom
component, you could have it take a callback as props.children:

// Calls the children callback numTimes to produce a repeated 
component 
function Repeat(props) { 
  let items = []; 
  for (let i = 0; i < props.numTimes; i++) { 
    items.push(props.children(i)); 
  } 
  return <div>{items}</div>; 
} 
 
function ListOfTenThings() { 
  return ( 
    <Repeat numTimes={10}> 
      {(index) => <div key={index}>This is item {index} in the 



list</div>} 
    </Repeat> 
  ); 
}

Children passed to a custom component can be anything, as long as that
component transforms them into something React can understand before
rendering. This usage is not common, but it works if you want to stretch
what JSX is capable of.

Booleans, Null, and Undefined Are Ignored

false, null, undefined, and true are valid children. They simply don’t
render. These JSX expressions will all render to the same thing:

This can be useful to conditionally render React elements. This JSX renders
the <Header /> component only if showHeader is true:

<div> 
  {showHeader && <Header />} 
  <Content /> 
</div>

One caveat is that some “falsy” values, such as the 0 number, are still
rendered by React. For example, this code will not behave as you might
expect because 0 will be printed when props.messages is an empty array:

<div> 
  {props.messages.length && 

<div />

<div></div>

<div>{false}</div>

<div>{null}</div>

<div>{undefined}</div>

<div>{true}</div>

https://developer.mozilla.org/en-US/docs/Glossary/Falsy


    <MessageList messages={props.messages} /> 
  } 
</div>

To fix this, make sure that the expression before && is always boolean:

<div> 
  {props.messages.length > 0 && 
    <MessageList messages={props.messages} /> 
  } 
</div>

Conversely, if you want a value like false, true, null, or undefined to
appear in the output, you have to convert it to a string first:

<div> 
  My JavaScript variable is {String(myVariable)}. 
</div>

Optimizing Performance

Internally, React uses several clever techniques to minimize the number of
costly DOM operations required to update the UI. For many applications,
using React will lead to a fast user interface without doing much work to
specifically optimize for performance. Nevertheless, there are several ways
you can speed up your React application.

Use the Production Build

If you’re benchmarking or experiencing performance problems in your
React apps, make sure you’re testing with the minified production build.

By default, React includes many helpful warnings. These warnings are very
useful in development. However, they make React larger and slower so you
should make sure to use the production version when you deploy the app.

If you aren’t sure whether your build process is set up correctly, you can
check it by installing React Developer Tools for Chrome. If you visit a site
with React in production mode, the icon will have a dark background:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String#String_conversion
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi


If you visit a site with React in development mode, the icon will have a red
background:

It is expected that you use the development mode when working on your
app, and the production mode when deploying your app to the users.

You can find instructions for building your app for production below.

Create React App

If your project is built with Create React App, run:

npm run build

This will create a production build of your app in the build/ folder of your
project.

Remember that this is only necessary before deploying to production. For
normal development, use npm start.

Single-File Builds

https://github.com/facebookincubator/create-react-app


We offer production-ready versions of React and React DOM as single files:

Remember that only React files ending with .production.min.js are
suitable for production.

Brunch

For the most efficient Brunch production build, install the terser-brunch
plugin:

## If you use npm 
npm install --save-dev terser-brunch 
 
## If you use Yarn 
yarn add --dev terser-brunch

Then, to create a production build, add the -p flag to the build command:

brunch build -p

Remember that you only need to do this for production builds. You shouldn’t
pass the -p flag or apply this plugin in development, because it will hide
useful React warnings and make the builds much slower.

Browserify

For the most efficient Browserify production build, install a few plugins:

## If you use npm 
npm install --save-dev envify terser uglifyify 
 
## If you use Yarn 
yarn add --dev envify terser uglifyify

To create a production build, make sure that you add these transforms (the
order matters):

<script src="https://unpkg.com/react@18/umd/react.production.min
<script src="https://unpkg.com/react-dom@18/umd/react-dom.product

https://github.com/brunch/terser-brunch


The envify transform ensures the right build environment is set. Make
it global (-g).
The uglifyify transform removes development imports. Make it
global too (-g).
Finally, the resulting bundle is piped to terser for mangling (read
why).

For example:

browserify ./index.js \ 
  -g [ envify --NODE_ENV production ] \ 
  -g uglifyify \ 
  | terser --compress --mangle > ./bundle.js

Remember that you only need to do this for production builds. You shouldn’t
apply these plugins in development because they will hide useful React
warnings, and make the builds much slower.

Rollup

For the most efficient Rollup production build, install a few plugins:

To create a production build, make sure that you add these plugins (the
order matters):

The replace plugin ensures the right build environment is set.
The commonjs plugin provides support for CommonJS in Rollup.
The terser plugin compresses and mangles the final bundle.

## If you use npm
npm install --save-dev rollup-plugin-commonjs rollup-plugin-repla

## If you use Yarn
yarn add --dev rollup-plugin-commonjs rollup-plugin-replace rollu

plugins: [
 // ...
 require('rollup-plugin-replace')({
   'process.env.NODE_ENV': JSON.stringify('production')

https://github.com/hughsk/envify
https://github.com/hughsk/uglifyify
https://github.com/terser-js/terser
https://github.com/hughsk/uglifyify#motivationusage
https://github.com/rollup/rollup-plugin-replace
https://github.com/rollup/rollup-plugin-commonjs
https://github.com/TrySound/rollup-plugin-terser


For a complete setup example see this gist.

Remember that you only need to do this for production builds. You shouldn’t
apply the terser plugin or the replace plugin with 'production' value in
development because they will hide useful React warnings, and make the
builds much slower.

webpack

Note:

If you’re using Create React App, please follow the instructions above.
This section is only relevant if you configure webpack directly.

Webpack v4+ will minify your code by default in production mode.

You can learn more about this in webpack documentation.

Remember that you only need to do this for production builds. You shouldn’t
apply TerserPlugin in development because it will hide useful React
warnings, and make the builds much slower.

Profiling Components with the DevTools Profiler

 }),
 require('rollup-plugin-commonjs')(),
 require('rollup-plugin-terser')(),
 // ...
]

const TerserPlugin = require('terser-webpack-plugin');

module.exports = {
 mode: 'production',
 optimization: {
   minimizer: [new TerserPlugin({ /* additional options here */ 
 },
};

https://gist.github.com/Rich-Harris/cb14f4bc0670c47d00d191565be36bf0
https://webpack.js.org/guides/production/


react-dom 16.5+ and react-native 0.57+ provide enhanced profiling
capabilities in DEV mode with the React DevTools Profiler. An overview of
the Profiler can be found in the blog post “Introducing the React Profiler”. A
video walkthrough of the profiler is also available on YouTube.

If you haven’t yet installed the React DevTools, you can find them here:

Chrome Browser Extension
Firefox Browser Extension
Standalone Node Package

Note

A production profiling bundle of react-dom is also available as react-
dom/profiling. Read more about how to use this bundle at
fb.me/react-profiling

Note

Before React 17, we use the standard User Timing API to profile
components with the chrome performance tab. For a more detailed
walkthrough, check out this article by Ben Schwarz.

Virtualize Long Lists

If your application renders long lists of data (hundreds or thousands of
rows), we recommend using a technique known as “windowing”. This
technique only renders a small subset of your rows at any given time, and
can dramatically reduce the time it takes to re-render the components as well
as the number of DOM nodes created.

react-window and react-virtualized are popular windowing libraries. They
provide several reusable components for displaying lists, grids, and tabular
data. You can also create your own windowing component, like Twitter did,
if you want something more tailored to your application’s specific use case.

Avoid Reconciliation

file:///C:/blog/2018/09/10/introducing-the-react-profiler.html
https://www.youtube.com/watch?v=nySib7ipZdk
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi?hl=en
https://addons.mozilla.org/en-GB/firefox/addon/react-devtools/
https://www.npmjs.com/package/react-devtools
https://fb.me/react-profiling
https://developer.mozilla.org/en-US/docs/Web/API/User_Timing_API
https://calibreapp.com/blog/react-performance-profiling-optimization
https://react-window.now.sh/
https://bvaughn.github.io/react-virtualized/
https://medium.com/@paularmstrong/twitter-lite-and-high-performance-react-progressive-web-apps-at-scale-d28a00e780a3


React builds and maintains an internal representation of the rendered UI. It
includes the React elements you return from your components. This
representation lets React avoid creating DOM nodes and accessing existing
ones beyond necessity, as that can be slower than operations on JavaScript
objects. Sometimes it is referred to as a “virtual DOM”, but it works the
same way on React Native.

When a component’s props or state change, React decides whether an actual
DOM update is necessary by comparing the newly returned element with the
previously rendered one. When they are not equal, React will update the
DOM.

Even though React only updates the changed DOM nodes, re-rendering still
takes some time. In many cases it’s not a problem, but if the slowdown is
noticeable, you can speed all of this up by overriding the lifecycle function 
shouldComponentUpdate, which is triggered before the re-rendering process
starts. The default implementation of this function returns true, leaving
React to perform the update:

If you know that in some situations your component doesn’t need to update,
you can return false from shouldComponentUpdate instead, to skip the
whole rendering process, including calling render() on this component and
below.

In most cases, instead of writing shouldComponentUpdate() by hand, you
can inherit from React.PureComponent. It is equivalent to implementing 
shouldComponentUpdate() with a shallow comparison of current and
previous props and state.

shouldComponentUpdate In Action

Here’s a subtree of components. For each one, SCU indicates what 
shouldComponentUpdate returned, and vDOMEq indicates whether the

shouldComponentUpdate(nextProps, nextState) {
 return true;
}



rendered React elements were equivalent. Finally, the circle’s color indicates
whether the component had to be reconciled or not.

Since shouldComponentUpdate returned false for the subtree rooted at C2,
React did not attempt to render C2, and thus didn’t even have to invoke 
shouldComponentUpdate on C4 and C5.

For C1 and C3, shouldComponentUpdate returned true, so React had to go
down to the leaves and check them. For C6 shouldComponentUpdate
returned true, and since the rendered elements weren’t equivalent React had
to update the DOM.

The last interesting case is C8. React had to render this component, but since
the React elements it returned were equal to the previously rendered ones, it
didn’t have to update the DOM.

Note that React only had to do DOM mutations for C6, which was
inevitable. For C8, it bailed out by comparing the rendered React elements,
and for C2’s subtree and C7, it didn’t even have to compare the elements as
we bailed out on shouldComponentUpdate, and render was not called.



Examples

If the only way your component ever changes is when the props.color or
the state.count variable changes, you could have shouldComponentUpdate
check that:

In this code, shouldComponentUpdate is just checking if there is any change
in props.color or state.count. If those values don’t change, the
component doesn’t update. If your component got more complex, you could
use a similar pattern of doing a “shallow comparison” between all the fields
of props and state to determine if the component should update. This
pattern is common enough that React provides a helper to use this logic - just

class CounterButton extends React.Component {
 constructor(props) {
   super(props);
   this.state = {count: 1};
 }

 shouldComponentUpdate(nextProps, nextState) {
   if (this.props.color !== nextProps.color) {
     return true;
   }
   if (this.state.count !== nextState.count) {
     return true;
   }
   return false;
 }

 render() {
   return (
     <button
       color={this.props.color}
       onClick={() => this.setState(state => ({count: state.coun
       Count: {this.state.count}
     </button>
   );
 }
}



inherit from React.PureComponent. So this code is a simpler way to achieve
the same thing:

Most of the time, you can use React.PureComponent instead of writing your
own shouldComponentUpdate. It only does a shallow comparison, so you
can’t use it if the props or state may have been mutated in a way that a
shallow comparison would miss.

This can be a problem with more complex data structures. For example, let’s
say you want a ListOfWords component to render a comma-separated list of
words, with a parent WordAdder component that lets you click a button to
add a word to the list. This code does not work correctly:

class CounterButton extends React.PureComponent {
 constructor(props) {
   super(props);
   this.state = {count: 1};
 }

 render() {
   return (
     <button
       color={this.props.color}
       onClick={() => this.setState(state => ({count: state.coun
       Count: {this.state.count}
     </button>
   );
 }
}

class ListOfWords extends React.PureComponent {
 render() {
   return <div>{this.props.words.join(',')}</div>;
 }
}

class WordAdder extends React.Component {
 constructor(props) {
   super(props);
   this.state = {



The problem is that PureComponent will do a simple comparison between
the old and new values of this.props.words. Since this code mutates the 
words array in the handleClick method of WordAdder, the old and new
values of this.props.words will compare as equal, even though the actual
words in the array have changed. The ListOfWords will thus not update even
though it has new words that should be rendered.

The Power Of Not Mutating Data

The simplest way to avoid this problem is to avoid mutating values that you
are using as props or state. For example, the handleClick method above
could be rewritten using concat as:

     words: ['marklar']
   };
   this.handleClick = this.handleClick.bind(this);
 }

 handleClick() {
   // This section is bad style and causes a bug
   const words = this.state.words;
   words.push('marklar');
   this.setState({words: words});
 }

 render() {
   return (
     <div>
       <button onClick={this.handleClick} />
       <ListOfWords words={this.state.words} />
     </div>
   );
 }
}

handleClick() {
 this.setState(state => ({
   words: state.words.concat(['marklar'])
 }));
}



ES6 supports a spread syntax for arrays which can make this easier. If you’re
using Create React App, this syntax is available by default.

You can also rewrite code that mutates objects to avoid mutation, in a similar
way. For example, let’s say we have an object named colormap and we want
to write a function that changes colormap.right to be 'blue'. We could
write:

To write this without mutating the original object, we can use Object.assign
method:

updateColorMap now returns a new object, rather than mutating the old one. 
Object.assign is in ES6 and requires a polyfill.

Object spread syntax makes it easier to update objects without mutation as
well:

This feature was added to JavaScript in ES2018.

If you’re using Create React App, both Object.assign and the object spread
syntax are available by default.

handleClick() {
 this.setState(state => ({
   words: [...state.words, 'marklar'],
 }));
};

function updateColorMap(colormap) {
 colormap.right = 'blue';
}

function updateColorMap(colormap) {
 return Object.assign({}, colormap, {right: 'blue'});
}

function updateColorMap(colormap) {
 return {...colormap, right: 'blue'};
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax


When you deal with deeply nested objects, updating them in an immutable
way can feel convoluted. If you run into this problem, check out Immer or
immutability-helper. These libraries let you write highly readable code
without losing the benefits of immutability.

Portals

Portals provide a first-class way to render children into a DOM node that
exists outside the DOM hierarchy of the parent component.

The first argument (child) is any renderable React child, such as an element,
string, or fragment. The second argument (container) is a DOM element.

Usage

Normally, when you return an element from a component’s render method,
it’s mounted into the DOM as a child of the nearest parent node:

render() { 
  // React mounts a new div and renders the children into it 
  return ( 
    <div> 
      {this.props.children} 
    </div> 
  ); 
}

However, sometimes it’s useful to insert a child into a different location in
the DOM:

render() { 
  // React does *not* create a new div. It renders the children 
into `domNode`. 
  // `domNode` is any valid DOM node, regardless of its location 
in the DOM. 
  return ReactDOM.createPortal( 
    this.props.children, 
    domNode 
  ); 
}

ReactDOM.createPortal(child, container)

https://github.com/mweststrate/immer
https://github.com/kolodny/immutability-helper


A typical use case for portals is when a parent component has an overflow: 
hidden or z-index style, but you need the child to visually “break out” of its
container. For example, dialogs, hovercards, and tooltips.

Note:

When working with portals, remember that managing keyboard focus
becomes very important.

For modal dialogs, ensure that everyone can interact with them by
following the WAI-ARIA Modal Authoring Practices.

Try it on CodePen

Event Bubbling Through Portals

Even though a portal can be anywhere in the DOM tree, it behaves like a
normal React child in every other way. Features like context work exactly
the same regardless of whether the child is a portal, as the portal still exists
in the React tree regardless of position in the DOM tree.

This includes event bubbling. An event fired from inside a portal will
propagate to ancestors in the containing React tree, even if those elements
are not ancestors in the DOM tree. Assuming the following HTML structure:

A Parent component in #app-root would be able to catch an uncaught,
bubbling event from the sibling node #modal-root.

// These two containers are siblings in the DOM 
const appRoot = document.getElementById('app-root'); 
const modalRoot = document.getElementById('modal-root'); 
 
class Modal extends React.Component { 

<html>
 <body>
   <div id="app-root"></div>
   <div id="modal-root"></div>
 </body>
</html>

https://www.w3.org/TR/wai-aria-practices-1.1/#dialog_modal
https://codepen.io/gaearon/pen/yzMaBd


  constructor(props) { 
    super(props); 
    this.el = document.createElement('div'); 
  } 
 
  componentDidMount() { 
    // The portal element is inserted in the DOM tree after 
    // the Modal's children are mounted, meaning that children 
    // will be mounted on a detached DOM node. If a child 
    // component requires to be attached to the DOM tree 
    // immediately when mounted, for example to measure a 
    // DOM node, or uses 'autoFocus' in a descendant, add 
    // state to Modal and only render the children when Modal 
    // is inserted in the DOM tree. 
    modalRoot.appendChild(this.el); 
  } 
 
  componentWillUnmount() { 
    modalRoot.removeChild(this.el); 
  } 
 
  render() { 
    return ReactDOM.createPortal( 
      this.props.children, 
      this.el 
    ); 
  } 
} 
 
class Parent extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = {clicks: 0}; 
    this.handleClick = this.handleClick.bind(this); 
  } 
 
  handleClick() { 
    // This will fire when the button in Child is clicked, 
    // updating Parent's state, even though button 
    // is not direct descendant in the DOM. 
    this.setState(state => ({ 
      clicks: state.clicks + 1 
    })); 
  } 
 
  render() { 
    return ( 
      <div onClick={this.handleClick}> 



        <p>Number of clicks: {this.state.clicks}</p> 
        <p> 
          Open up the browser DevTools 
          to observe that the button 
          is not a child of the div 
          with the onClick handler. 
        </p> 
        <Modal> 
          <Child /> 
        </Modal> 
      </div> 
    ); 
  } 
} 
 
function Child() { 
  // The click event on this button will bubble up to parent, 
  // because there is no 'onClick' attribute defined 
  return ( 
    <div className="modal"> 
      <button>Click</button> 
    </div> 
  ); 
} 
 
const root = ReactDOM.createRoot(appRoot); 
root.render(<Parent />);

Try it on CodePen

Catching an event bubbling up from a portal in a parent component allows
the development of more flexible abstractions that are not inherently reliant
on portals. For example, if you render a <Modal /> component, the parent
can capture its events regardless of whether it’s implemented using portals.

Profiler API

The Profiler measures how often a React application renders and what the
“cost” of rendering is. Its purpose is to help identify parts of an application
that are slow and may benefit from optimizations such as memoization.

Note:

https://codepen.io/gaearon/pen/jGBWpE


Profiling adds some additional overhead, so it is disabled in the
production build.

To opt into production profiling, React provides a special production
build with profiling enabled. Read more about how to use this build at
fb.me/react-profiling

Usage

A Profiler can be added anywhere in a React tree to measure the cost of
rendering that part of the tree. It requires two props: an id (string) and an 
onRender callback (function) which React calls any time a component
within the tree “commits” an update.

For example, to profile a Navigation component and its descendants:

render( 
  <App> 
    <Profiler id="Navigation" onRender={callback}> 
      <Navigation {...props} /> 
    </Profiler> 
    <Main {...props} /> 
  </App> 
);

Multiple Profiler components can be used to measure different parts of an
application:

render( 
  <App> 
    <Profiler id="Navigation" onRender={callback}> 
      <Navigation {...props} /> 
    </Profiler> 
    <Profiler id="Main" onRender={callback}> 
      <Main {...props} /> 
    </Profiler> 
  </App> 
);

Profiler components can also be nested to measure different components
within the same subtree:

https://fb.me/react-profiling


render( 
  <App> 
    <Profiler id="Panel" onRender={callback}> 
      <Panel {...props}> 
        <Profiler id="Content" onRender={callback}> 
          <Content {...props} /> 
        </Profiler> 
        <Profiler id="PreviewPane" onRender={callback}> 
          <PreviewPane {...props} /> 
        </Profiler> 
      </Panel> 
    </Profiler> 
  </App> 
);

Note

Although Profiler is a light-weight component, it should be used only
when necessary; each use adds some CPU and memory overhead to an
application.

onRender Callback

The Profiler requires an onRender function as a prop. React calls this
function any time a component within the profiled tree “commits” an update.
It receives parameters describing what was rendered and how long it took.

Let’s take a closer look at each of the props:

function onRenderCallback(
 id, // the "id" prop of the Profiler tree that has just committ
 phase, // either "mount" (if the tree just mounted) or "update
 actualDuration, // time spent rendering the committed update
 baseDuration, // estimated time to render the entire subtree wi
 startTime, // when React began rendering this update
 commitTime, // when React committed this update
 interactions // the Set of interactions belonging to this updat
) {
 // Aggregate or log render timings...
}



id: string - The id prop of the Profiler tree that has just committed.
This can be used to identify which part of the tree was committed if you
are using multiple profilers.
phase: "mount" | "update" - Identifies whether the tree has just been
mounted for the first time or re-rendered due to a change in props, state,
or hooks.
actualDuration: number - Time spent rendering the Profiler and its
descendants for the current update. This indicates how well the subtree
makes use of memoization (e.g. React.memo, useMemo, 
shouldComponentUpdate). Ideally this value should decrease
significantly after the initial mount as many of the descendants will
only need to re-render if their specific props change.
baseDuration: number - Duration of the most recent render time for
each individual component within the Profiler tree. This value
estimates a worst-case cost of rendering (e.g. the initial mount or a tree
with no memoization).
startTime: number - Timestamp when React began rendering the
current update.
commitTime: number - Timestamp when React committed the current
update. This value is shared between all profilers in a commit, enabling
them to be grouped if desirable.
interactions: Set - Set of “interactions” that were being traced when
the update was scheduled (e.g. when render or setState were called).

Note

Interactions can be used to identify the cause of an update, although the
API for tracing them is still experimental.

Learn more about it at fb.me/react-interaction-tracing

React Without ES6

Normally you would define a React component as a plain JavaScript class:

class Greeting extends React.Component {
 render() {
   return <h1>Hello, {this.props.name}</h1>;

https://fb.me/react-interaction-tracing
https://fb.me/react-interaction-tracing


If you don’t use ES6 yet, you may use the create-react-class module
instead:

The API of ES6 classes is similar to createReactClass() with a few
exceptions.

Declaring Default Props

With functions and ES6 classes defaultProps is defined as a property on the
component itself:

With createReactClass(), you need to define getDefaultProps() as a
function on the passed object:

 }
}

var createReactClass = require('create-react-class');
var Greeting = createReactClass({
 render: function() {
   return <h1>Hello, {this.props.name}</h1>;
 }
});

class Greeting extends React.Component {
 // ...
}

Greeting.defaultProps = {
 name: 'Mary'
};

var Greeting = createReactClass({
 getDefaultProps: function() {
   return {
     name: 'Mary'
   };
 },

 // ...



Setting the Initial State

In ES6 classes, you can define the initial state by assigning this.state in
the constructor:

With createReactClass(), you have to provide a separate 
getInitialState method that returns the initial state:

Autobinding

In React components declared as ES6 classes, methods follow the same
semantics as regular ES6 classes. This means that they don’t automatically
bind this to the instance. You’ll have to explicitly use .bind(this) in the
constructor:

});

class Counter extends React.Component {
 constructor(props) {
   super(props);
   this.state = {count: props.initialCount};
 }
 // ...
}

var Counter = createReactClass({
 getInitialState: function() {
   return {count: this.props.initialCount};
 },
 // ...
});

class SayHello extends React.Component {
 constructor(props) {
   super(props);
   this.state = {message: 'Hello!'};
   // This line is important!
   this.handleClick = this.handleClick.bind(this);
 }



With createReactClass(), this is not necessary because it binds all
methods:

This means writing ES6 classes comes with a little more boilerplate code for
event handlers, but the upside is slightly better performance in large
applications.

 handleClick() {
   alert(this.state.message);
 }

 render() {
   // Because `this.handleClick` is bound, we can use it as an e
   return (
     <button onClick={this.handleClick}>
       Say hello
     </button>
   );
 }
}

var SayHello = createReactClass({
 getInitialState: function() {
   return {message: 'Hello!'};
 },

 handleClick: function() {
   alert(this.state.message);
 },

 render: function() {
   return (
     <button onClick={this.handleClick}>
       Say hello
     </button>
   );
 }
});



If the boilerplate code is too unattractive to you, you may use ES2022 Class
Properties syntax:

You also have a few other options:

Bind methods in the constructor.
Use arrow functions, e.g. onClick={(e) => this.handleClick(e)}.
Keep using createReactClass.

Mixins

Note:

ES6 launched without any mixin support. Therefore, there is no support
for mixins when you use React with ES6 classes.

We also found numerous issues in codebases using mixins, and
don’t recommend using them in the new code.

This section exists only for the reference.

class SayHello extends React.Component {
 constructor(props) {
   super(props);
   this.state = {message: 'Hello!'};
 }
 
 // Using an arrow here binds the method:
 handleClick = () => {
   alert(this.state.message);
 };

 render() {
   return (
     <button onClick={this.handleClick}>
       Say hello
     </button>
   );
 }
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Public_class_fields#public_instance_fields
file:///C:/blog/2016/07/13/mixins-considered-harmful.html


Sometimes very different components may share some common
functionality. These are sometimes called cross-cutting concerns. 
createReactClass lets you use a legacy mixins system for that.

One common use case is a component wanting to update itself on a time
interval. It’s easy to use setInterval(), but it’s important to cancel your
interval when you don’t need it anymore to save memory. React provides
lifecycle methods that let you know when a component is about to be created
or destroyed. Let’s create a simple mixin that uses these methods to provide
an easy setInterval() function that will automatically get cleaned up when
your component is destroyed.

var SetIntervalMixin = {
 componentWillMount: function() {
   this.intervals = [];
 },
 setInterval: function() {
   this.intervals.push(setInterval.apply(null, arguments));
 },
 componentWillUnmount: function() {
   this.intervals.forEach(clearInterval);
 }
};

var createReactClass = require('create-react-class');

var TickTock = createReactClass({
 mixins: [SetIntervalMixin], // Use the mixin
 getInitialState: function() {
   return {seconds: 0};
 },
 componentDidMount: function() {
   this.setInterval(this.tick, 1000); // Call a method on the mi
 },
 tick: function() {
   this.setState({seconds: this.state.seconds + 1});
 },
 render: function() {
   return (
     <p>
       React has been running for {this.state.seconds} seconds.

https://en.wikipedia.org/wiki/Cross-cutting_concern


If a component is using multiple mixins and several mixins define the same
lifecycle method (i.e. several mixins want to do some cleanup when the
component is destroyed), all of the lifecycle methods are guaranteed to be
called. Methods defined on mixins run in the order mixins were listed,
followed by a method call on the component.

React Without JSX

JSX is not a requirement for using React. Using React without JSX is
especially convenient when you don’t want to set up compilation in your
build environment.

Each JSX element is just syntactic sugar for calling 
React.createElement(component, props, ...children). So, anything
you can do with JSX can also be done with just plain JavaScript.

For example, this code written with JSX:

can be compiled to this code that does not use JSX:

     </p>
   );
 }
});

const root = ReactDOM.createRoot(document.getElementById('example
root.render(<TickTock />);

class Hello extends React.Component {
 render() {
   return <div>Hello {this.props.toWhat}</div>;
 }
}

const root = ReactDOM.createRoot(document.getElementById('root'))
root.render(<Hello toWhat="World" />);



If you’re curious to see more examples of how JSX is converted to
JavaScript, you can try out the online Babel compiler.

The component can either be provided as a string, as a subclass of 
React.Component, or a plain function.

If you get tired of typing React.createElement so much, one common
pattern is to assign a shorthand:

If you use this shorthand form for React.createElement, it can be almost as
convenient to use React without JSX.

Alternatively, you can refer to community projects such as react-

hyperscript and hyperscript-helpers which offer a terser syntax.

Reconciliation

React provides a declarative API so that you don’t have to worry about
exactly what changes on every update. This makes writing applications a lot
easier, but it might not be obvious how this is implemented within React.
This article explains the choices we made in React’s “diffing” algorithm so
that component updates are predictable while being fast enough for high-
performance apps.

class Hello extends React.Component {
 render() {
   return React.createElement('div', null, `Hello ${this.props.t
 }
}

const root = ReactDOM.createRoot(document.getElementById('root'))
root.render(React.createElement(Hello, {toWhat: 'World'}, null));

const e = React.createElement;

const root = ReactDOM.createRoot(document.getElementById('root'))
root.render(e('div', null, 'Hello World'));

babel://jsx-simple-example
https://github.com/mlmorg/react-hyperscript
https://github.com/ohanhi/hyperscript-helpers


Motivation

When you use React, at a single point in time you can think of the render()
function as creating a tree of React elements. On the next state or props
update, that render() function will return a different tree of React elements.
React then needs to figure out how to efficiently update the UI to match the
most recent tree.

There are some generic solutions to this algorithmic problem of generating
the minimum number of operations to transform one tree into another.
However, the state of the art algorithms have a complexity in the order of
O(n3) where n is the number of elements in the tree.

If we used this in React, displaying 1000 elements would require in the order
of one billion comparisons. This is far too expensive. Instead, React
implements a heuristic O(n) algorithm based on two assumptions:

1. Two elements of different types will produce different trees.
2. The developer can hint at which child elements may be stable across

different renders with a key prop.

In practice, these assumptions are valid for almost all practical use cases.

The Diffing Algorithm

When diffing two trees, React first compares the two root elements. The
behavior is different depending on the types of the root elements.

Elements Of Different Types

Whenever the root elements have different types, React will tear down the
old tree and build the new tree from scratch. Going from <a> to <img>, or
from <Article> to <Comment>, or from <Button> to <div> - any of those
will lead to a full rebuild.

When tearing down a tree, old DOM nodes are destroyed. Component
instances receive componentWillUnmount(). When building up a new tree,

https://grfia.dlsi.ua.es/ml/algorithms/references/editsurvey_bille.pdf


new DOM nodes are inserted into the DOM. Component instances receive 
UNSAFE_componentWillMount() and then componentDidMount(). Any state
associated with the old tree is lost.

Any components below the root will also get unmounted and have their state
destroyed. For example, when diffing:

This will destroy the old Counter and remount a new one.

Note:

This method is considered legacy and you should avoid it in new code:

UNSAFE_componentWillMount()

DOM Elements Of The Same Type

When comparing two React DOM elements of the same type, React looks at
the attributes of both, keeps the same underlying DOM node, and only
updates the changed attributes. For example:

By comparing these two elements, React knows to only modify the 
className on the underlying DOM node.

When updating style, React also knows to update only the properties that
changed. For example:

<div>
 <Counter />
</div>

<span>
 <Counter />
</span>

<div className="before" title="stuff" />

<div className="after" title="stuff" />

file:///C:/blog/2018/03/27/update-on-async-rendering.html


When converting between these two elements, React knows to only modify
the color style, not the fontWeight.

After handling the DOM node, React then recurses on the children.

Component Elements Of The Same Type

When a component updates, the instance stays the same, so that state is
maintained across renders. React updates the props of the underlying
component instance to match the new element, and calls 
UNSAFE_componentWillReceiveProps(), UNSAFE_componentWillUpdate()

and componentDidUpdate() on the underlying instance.

Next, the render() method is called and the diff algorithm recurses on the
previous result and the new result.

Note:

These methods are considered legacy and you should avoid them in
new code:

UNSAFE_componentWillUpdate()

UNSAFE_componentWillReceiveProps()

Recursing On Children

By default, when recursing on the children of a DOM node, React just
iterates over both lists of children at the same time and generates a mutation
whenever there’s a difference.

For example, when adding an element at the end of the children, converting
between these two trees works well:

<div style={{color: 'red', fontWeight: 'bold'}} />

<div style={{color: 'green', fontWeight: 'bold'}} />

file:///C:/blog/2018/03/27/update-on-async-rendering.html


React will match the two <li>first</li> trees, match the two 
<li>second</li> trees, and then insert the <li>third</li> tree.

If you implement it naively, inserting an element at the beginning has worse
performance. For example, converting between these two trees works
poorly:

React will mutate every child instead of realizing it can keep the 
<li>Duke</li> and <li>Villanova</li> subtrees intact. This inefficiency
can be a problem.

Keys

In order to solve this issue, React supports a key attribute. When children
have keys, React uses the key to match children in the original tree with
children in the subsequent tree. For example, adding a key to our inefficient
example above can make the tree conversion efficient:

<ul>
 <li>first</li>
 <li>second</li>
</ul>

<ul>
 <li>first</li>
 <li>second</li>
 <li>third</li>
</ul>

<ul>
 <li>Duke</li>
 <li>Villanova</li>
</ul>

<ul>
 <li>Connecticut</li>
 <li>Duke</li>
 <li>Villanova</li>
</ul>



Now React knows that the element with key '2014' is the new one, and the
elements with the keys '2015' and '2016' have just moved.

In practice, finding a key is usually not hard. The element you are going to
display may already have a unique ID, so the key can just come from your
data:

When that’s not the case, you can add a new ID property to your model or
hash some parts of the content to generate a key. The key only has to be
unique among its siblings, not globally unique.

As a last resort, you can pass an item’s index in the array as a key. This can
work well if the items are never reordered, but reorders will be slow.

Reorders can also cause issues with component state when indexes are used
as keys. Component instances are updated and reused based on their key. If
the key is an index, moving an item changes it. As a result, component state
for things like uncontrolled inputs can get mixed up and updated in
unexpected ways.

Here is an example of the issues that can be caused by using indexes as keys
on CodePen, and here is an updated version of the same example showing
how not using indexes as keys will fix these reordering, sorting, and
prepending issues.

Tradeoffs

<ul>
 <li key="2015">Duke</li>
 <li key="2016">Villanova</li>
</ul>

<ul>
 <li key="2014">Connecticut</li>
 <li key="2015">Duke</li>
 <li key="2016">Villanova</li>
</ul>

<li key={item.id}>{item.name}</li>

codepen://reconciliation/index-used-as-key
codepen://reconciliation/no-index-used-as-key


It is important to remember that the reconciliation algorithm is an
implementation detail. React could rerender the whole app on every action;
the end result would be the same. Just to be clear, rerender in this context
means calling render for all components, it doesn’t mean React will
unmount and remount them. It will only apply the differences following the
rules stated in the previous sections.

We are regularly refining the heuristics in order to make common use cases
faster. In the current implementation, you can express the fact that a subtree
has been moved amongst its siblings, but you cannot tell that it has moved
somewhere else. The algorithm will rerender that full subtree.

Because React relies on heuristics, if the assumptions behind them are not
met, performance will suffer.

1. The algorithm will not try to match subtrees of different component
types. If you see yourself alternating between two component types
with very similar output, you may want to make it the same type. In
practice, we haven’t found this to be an issue.

2. Keys should be stable, predictable, and unique. Unstable keys (like
those produced by Math.random()) will cause many component
instances and DOM nodes to be unnecessarily recreated, which can
cause performance degradation and lost state in child components.

Refs and the DOM

Refs provide a way to access DOM nodes or React elements created in the
render method.

In the typical React dataflow, props are the only way that parent components
interact with their children. To modify a child, you re-render it with new
props. However, there are a few cases where you need to imperatively
modify a child outside of the typical dataflow. The child to be modified
could be an instance of a React component, or it could be a DOM element.
For both of these cases, React provides an escape hatch.



When to Use Refs

There are a few good use cases for refs:

Managing focus, text selection, or media playback.
Triggering imperative animations.
Integrating with third-party DOM libraries.

Avoid using refs for anything that can be done declaratively.

For example, instead of exposing open() and close() methods on a Dialog
component, pass an isOpen prop to it.

Don’t Overuse Refs

Your first inclination may be to use refs to “make things happen” in your
app. If this is the case, take a moment and think more critically about where
state should be owned in the component hierarchy. Often, it becomes clear
that the proper place to “own” that state is at a higher level in the hierarchy.
See the Lifting State Up guide for examples of this.

Note

The examples below have been updated to use the React.createRef()
API introduced in React 16.3. If you are using an earlier release of
React, we recommend using callback refs instead.

Creating Refs

Refs are created using React.createRef() and attached to React elements
via the ref attribute. Refs are commonly assigned to an instance property
when a component is constructed so they can be referenced throughout the
component.

class MyComponent extends React.Component { 
  constructor(props) { 
    super(props); 
    this.myRef = React.createRef(); 
  } 



  render() { 
    return <div ref={this.myRef} />; 
  } 
}

Accessing Refs

When a ref is passed to an element in render, a reference to the node
becomes accessible at the current attribute of the ref.

The value of the ref differs depending on the type of the node:

When the ref attribute is used on an HTML element, the ref created in
the constructor with React.createRef() receives the underlying DOM
element as its current property.
When the ref attribute is used on a custom class component, the ref
object receives the mounted instance of the component as its current.
You may not use the ref attribute on function components because
they don’t have instances.

The examples below demonstrate the differences.

Adding a Ref to a DOM Element

This code uses a ref to store a reference to a DOM node:

class CustomTextInput extends React.Component { 
  constructor(props) { 
    super(props); 
    // create a ref to store the textInput DOM element 
    this.textInput = React.createRef(); 
    this.focusTextInput = this.focusTextInput.bind(this); 
  } 
 
  focusTextInput() { 
    // Explicitly focus the text input using the raw DOM API 
    // Note: we're accessing "current" to get the DOM node 
    this.textInput.current.focus(); 
  } 
 

const node = this.myRef.current;



  render() { 
    // tell React that we want to associate the <input> ref 
    // with the `textInput` that we created in the constructor 
    return ( 
      <div> 
        <input 
          type="text" 
          ref={this.textInput} /> 
        <input 
          type="button" 
          value="Focus the text input" 
          onClick={this.focusTextInput} 
        /> 
      </div> 
    ); 
  } 
}

React will assign the current property with the DOM element when the
component mounts, and assign it back to null when it unmounts. ref
updates happen before componentDidMount or componentDidUpdate

lifecycle methods.

Adding a Ref to a Class Component

If we wanted to wrap the CustomTextInput above to simulate it being
clicked immediately after mounting, we could use a ref to get access to the
custom input and call its focusTextInput method manually:

class AutoFocusTextInput extends React.Component { 
  constructor(props) { 
    super(props); 
    this.textInput = React.createRef(); 
  } 
 
  componentDidMount() { 
    this.textInput.current.focusTextInput(); 
  } 
 
  render() { 
    return ( 
      <CustomTextInput ref={this.textInput} /> 
    ); 
  } 
}



Note that this only works if CustomTextInput is declared as a class:

class CustomTextInput extends React.Component { 
  // ... 
}

Refs and Function Components

By default, you may not use the ref attribute on function components
because they don’t have instances:

function MyFunctionComponent() { 
  return <input />; 
} 
 
class Parent extends React.Component { 
  constructor(props) { 
    super(props); 
    this.textInput = React.createRef(); 
  } 
  render() { 
    // This will *not* work! 
    return ( 
      <MyFunctionComponent ref={this.textInput} /> 
    ); 
  } 
}

If you want to allow people to take a ref to your function component, you
can use forwardRef (possibly in conjunction with useImperativeHandle),
or you can convert the component to a class.

You can, however, use the ref attribute inside a function component as
long as you refer to a DOM element or a class component:

function CustomTextInput(props) { 
  // textInput must be declared here so the ref can refer to it 
  const textInput = useRef(null); 
   
  function handleClick() { 
    textInput.current.focus(); 
  } 
 
  return ( 



    <div> 
      <input 
        type="text" 
        ref={textInput} /> 
      <input 
        type="button" 
        value="Focus the text input" 
        onClick={handleClick} 
      /> 
    </div> 
  ); 
}

Exposing DOM Refs to Parent Components

In rare cases, you might want to have access to a child’s DOM node from a
parent component. This is generally not recommended because it breaks
component encapsulation, but it can occasionally be useful for triggering
focus or measuring the size or position of a child DOM node.

While you could add a ref to the child component, this is not an ideal
solution, as you would only get a component instance rather than a DOM
node. Additionally, this wouldn’t work with function components.

If you use React 16.3 or higher, we recommend to use ref forwarding for
these cases. Ref forwarding lets components opt into exposing any child
component’s ref as their own. You can find a detailed example of how to
expose a child’s DOM node to a parent component in the ref forwarding
documentation.

If you use React 16.2 or lower, or if you need more flexibility than provided
by ref forwarding, you can use this alternative approach and explicitly pass a
ref as a differently named prop.

When possible, we advise against exposing DOM nodes, but it can be a
useful escape hatch. Note that this approach requires you to add some code
to the child component. If you have absolutely no control over the child
component implementation, your last option is to use findDOMNode(), but it
is discouraged and deprecated in StrictMode.

https://gist.github.com/gaearon/1a018a023347fe1c2476073330cc5509


Callback Refs

React also supports another way to set refs called “callback refs”, which
gives more fine-grain control over when refs are set and unset.

Instead of passing a ref attribute created by createRef(), you pass a
function. The function receives the React component instance or HTML
DOM element as its argument, which can be stored and accessed elsewhere.

The example below implements a common pattern: using the ref callback to
store a reference to a DOM node in an instance property.

class CustomTextInput extends React.Component { 
  constructor(props) { 
    super(props); 
 
    this.textInput = null; 
 
    this.setTextInputRef = element => { 
      this.textInput = element; 
    }; 
 
    this.focusTextInput = () => { 
      // Focus the text input using the raw DOM API 
      if (this.textInput) this.textInput.focus(); 
    }; 
  } 
 
  componentDidMount() { 
    // autofocus the input on mount 
    this.focusTextInput(); 
  } 
 
  render() { 
    // Use the `ref` callback to store a reference to the text 
input DOM 
    // element in an instance field (for example, 
this.textInput). 
    return ( 
      <div> 
        <input 
          type="text" 
          ref={this.setTextInputRef} 
        /> 
        <input 



          type="button" 
          value="Focus the text input" 
          onClick={this.focusTextInput} 
        /> 
      </div> 
    ); 
  } 
}

React will call the ref callback with the DOM element when the component
mounts, and call it with null when it unmounts. Refs are guaranteed to be
up-to-date before componentDidMount or componentDidUpdate fires.

You can pass callback refs between components like you can with object refs
that were created with React.createRef().

function CustomTextInput(props) { 
  return ( 
    <div> 
      <input ref={props.inputRef} /> 
    </div> 
  ); 
} 
 
class Parent extends React.Component { 
  render() { 
    return ( 
      <CustomTextInput 
        inputRef={el => this.inputElement = el} 
      /> 
    ); 
  } 
}

In the example above, Parent passes its ref callback as an inputRef prop to
the CustomTextInput, and the CustomTextInput passes the same function as
a special ref attribute to the <input>. As a result, this.inputElement in 
Parent will be set to the DOM node corresponding to the <input> element
in the CustomTextInput.

Legacy API: String Refs



If you worked with React before, you might be familiar with an older API
where the ref attribute is a string, like "textInput", and the DOM node is
accessed as this.refs.textInput. We advise against it because string refs
have some issues, are considered legacy, and are likely to be removed in
one of the future releases.

Note

If you’re currently using this.refs.textInput to access refs, we
recommend using either the callback pattern or the createRef API
instead.

Caveats with callback refs

If the ref callback is defined as an inline function, it will get called twice
during updates, first with null and then again with the DOM element. This
is because a new instance of the function is created with each render, so
React needs to clear the old ref and set up the new one. You can avoid this
by defining the ref callback as a bound method on the class, but note that it
shouldn’t matter in most cases.

Render Props

The term “render prop” refers to a technique for sharing code between React
components using a prop whose value is a function.

A component with a render prop takes a function that returns a React
element and calls it instead of implementing its own render logic.

Libraries that use render props include React Router, Downshift and Formik.

In this document, we’ll discuss why render props are useful, and how to
write your own.

<DataProvider render={data => (
 <h1>Hello {data.target}</h1>
)}/>

https://github.com/facebook/react/pull/8333#issuecomment-271648615
https://cdb.reacttraining.com/use-a-render-prop-50de598f11ce
https://reacttraining.com/react-router/web/api/Route/render-func
https://github.com/paypal/downshift
https://github.com/jaredpalmer/formik


Use Render Props for Cross-Cutting Concerns

Components are the primary unit of code reuse in React, but it’s not always
obvious how to share the state or behavior that one component encapsulates
to other components that need that same state.

For example, the following component tracks the mouse position in a web
app:

As the cursor moves around the screen, the component displays its (x, y)
coordinates in a <p>.

Now the question is: How can we reuse this behavior in another component?
In other words, if another component needs to know about the cursor
position, can we encapsulate that behavior so that we can easily share it with
that component?

class MouseTracker extends React.Component {
 constructor(props) {
   super(props);
   this.handleMouseMove = this.handleMouseMove.bind(this);
   this.state = { x: 0, y: 0 };
 }

 handleMouseMove(event) {
   this.setState({
     x: event.clientX,
     y: event.clientY
   });
 }

 render() {
   return (
     <div style={{ height: '100vh' }} onMouseMove={this.handleMo
       <h1>Move the mouse around!</h1>
       <p>The current mouse position is ({this.state.x}, {this.s
     </div>
   );
 }
}



Since components are the basic unit of code reuse in React, let’s try
refactoring the code a bit to use a <Mouse> component that encapsulates the
behavior we need to reuse elsewhere.

// The <Mouse> component encapsulates the behavior we need...
class Mouse extends React.Component {
 constructor(props) {
   super(props);
   this.handleMouseMove = this.handleMouseMove.bind(this);
   this.state = { x: 0, y: 0 };
 }

 handleMouseMove(event) {
   this.setState({
     x: event.clientX,
     y: event.clientY
   });
 }

 render() {
   return (
     <div style={{ height: '100vh' }} onMouseMove={this.handleMo

       {/* ...but how do we render something other than a <p>? 
       <p>The current mouse position is ({this.state.x}, {this.s
     </div>
   );
 }
}

class MouseTracker extends React.Component {
 render() {
   return (
     <>
       <h1>Move the mouse around!</h1>
       <Mouse />
     </>
   );
 }
}



Now the <Mouse> component encapsulates all behavior associated with
listening for mousemove events and storing the (x, y) position of the cursor,
but it’s not yet truly reusable.

For example, let’s say we have a <Cat> component that renders the image of
a cat chasing the mouse around the screen. We might use a <Cat mouse={{ 
x, y }}> prop to tell the component the coordinates of the mouse so it
knows where to position the image on the screen.

As a first pass, you might try rendering the <Cat> inside <Mouse>’s render
method, like this:

class Cat extends React.Component {
 render() {
   const mouse = this.props.mouse;
   return (
     <img src="/cat.jpg" style={{ position: 'absolute', left: mo
   );
 }
}

class MouseWithCat extends React.Component {
 constructor(props) {
   super(props);
   this.handleMouseMove = this.handleMouseMove.bind(this);
   this.state = { x: 0, y: 0 };
 }

 handleMouseMove(event) {
   this.setState({
     x: event.clientX,
     y: event.clientY
   });
 }

 render() {
   return (
     <div style={{ height: '100vh' }} onMouseMove={this.handleMo

       {/*
         We could just swap out the <p> for a <Cat> here ... but



This approach will work for our specific use case, but we haven’t achieved
the objective of truly encapsulating the behavior in a reusable way. Now,
every time we want the mouse position for a different use case, we have to
create a new component (i.e. essentially another <MouseWithCat>) that
renders something specifically for that use case.

Here’s where the render prop comes in: Instead of hard-coding a <Cat>
inside a <Mouse> component, and effectively changing its rendered output,
we can provide <Mouse> with a function prop that it uses to dynamically
determine what to render–a render prop.

         we would need to create a separate <MouseWithSomethingE
         component every time we need to use it, so <MouseWithCa
         isn't really reusable yet.
       */}
       <Cat mouse={this.state} />
     </div>
   );
 }
}

class MouseTracker extends React.Component {
 render() {
   return (
     <div>
       <h1>Move the mouse around!</h1>
       <MouseWithCat />
     </div>
   );
 }
}

class Cat extends React.Component {
 render() {
   const mouse = this.props.mouse;
   return (
     <img src="/cat.jpg" style={{ position: 'absolute', left: mo
   );
 }
}



class Mouse extends React.Component {
 constructor(props) {
   super(props);
   this.handleMouseMove = this.handleMouseMove.bind(this);
   this.state = { x: 0, y: 0 };
 }

 handleMouseMove(event) {
   this.setState({
     x: event.clientX,
     y: event.clientY
   });
 }

 render() {
   return (
     <div style={{ height: '100vh' }} onMouseMove={this.handleMo

       {/*
         Instead of providing a static representation of what <M
         use the `render` prop to dynamically determine what to 
       */}
       {this.props.render(this.state)}
     </div>
   );
 }
}

class MouseTracker extends React.Component {
 render() {
   return (
     <div>
       <h1>Move the mouse around!</h1>
       <Mouse render={mouse => (
         <Cat mouse={mouse} />
       )}/>
     </div>
   );
 }
}



Now, instead of effectively cloning the <Mouse> component and hard-coding
something else in its render method to solve for a specific use case, we
provide a render prop that <Mouse> can use to dynamically determine what
it renders.

More concretely, a render prop is a function prop that a component uses
to know what to render.

This technique makes the behavior that we need to share extremely portable.
To get that behavior, render a <Mouse> with a render prop that tells it what
to render with the current (x, y) of the cursor.

One interesting thing to note about render props is that you can implement
most higher-order components (HOC) using a regular component with a
render prop. For example, if you would prefer to have a withMouse HOC
instead of a <Mouse> component, you could easily create one using a regular 
<Mouse> with a render prop:

So using a render prop makes it possible to use either pattern.

Using Props Other Than render

It’s important to remember that just because the pattern is called “render
props” you don’t have to use a prop named render to use this pattern. In
fact, any prop that is a function that a component uses to know what to
render is technically a “render prop”.

// If you really want a HOC for some reason, you can easily
// create one using a regular component with a render prop!
function withMouse(Component) {
 return class extends React.Component {
   render() {
     return (
       <Mouse render={mouse => (
         <Component {...this.props} mouse={mouse} />
       )}/>
     );
   }
 }
}

https://cdb.reacttraining.com/use-a-render-prop-50de598f11ce


Although the examples above use render, we could just as easily use the 
children prop!

And remember, the children prop doesn’t actually need to be named in the
list of “attributes” in your JSX element. Instead, you can put it directly
inside the element!

You’ll see this technique used in the react-motion API.

Since this technique is a little unusual, you’ll probably want to explicitly
state that children should be a function in your propTypes when designing
an API like this.

Caveats

Be careful when using Render Props with React.PureComponent

Using a render prop can negate the advantage that comes from using 
React.PureComponent if you create the function inside a render method.
This is because the shallow prop comparison will always return false for
new props, and each render in this case will generate a new value for the
render prop.

For example, continuing with our <Mouse> component from above, if Mouse
were to extend React.PureComponent instead of React.Component, our

<Mouse children={mouse => (
 <p>The mouse position is {mouse.x}, {mouse.y}</p>
)}/>

<Mouse>
 {mouse => (
   <p>The mouse position is {mouse.x}, {mouse.y}</p>
 )}
</Mouse>

Mouse.propTypes = {
 children: PropTypes.func.isRequired
};

https://github.com/chenglou/react-motion


example would look like this:

In this example, each time <MouseTracker> renders, it generates a new
function as the value of the <Mouse render> prop, thus negating the effect of
<Mouse> extending React.PureComponent in the first place!

To get around this problem, you can sometimes define the prop as an
instance method, like so:

class Mouse extends React.PureComponent {
 // Same implementation as above...
}

class MouseTracker extends React.Component {
 render() {
   return (
     <div>
       <h1>Move the mouse around!</h1>

       {/*
         This is bad! The value of the `render` prop will
         be different on each render.
       */}
       <Mouse render={mouse => (
         <Cat mouse={mouse} />
       )}/>
     </div>
   );
 }
}

class MouseTracker extends React.Component {
 // Defined as an instance method, `this.renderTheCat` always
 // refers to *same* function when we use it in render
 renderTheCat(mouse) {
   return <Cat mouse={mouse} />;
 }

 render() {
   return (
     <div>
       <h1>Move the mouse around!</h1>



In cases where you cannot define the prop statically (e.g. because you need
to close over the component’s props and/or state) <Mouse> should extend 
React.Component instead.

Static Type Checking

Static type checkers like Flow and TypeScript identify certain types of
problems before you even run your code. They can also improve developer
workflow by adding features like auto-completion. For this reason, we
recommend using Flow or TypeScript instead of PropTypes for larger code
bases.

Flow

Flow is a static type checker for your JavaScript code. It is developed at
Facebook and is often used with React. It lets you annotate the variables,
functions, and React components with a special type syntax, and catch
mistakes early. You can read an introduction to Flow to learn its basics.

To use Flow, you need to:

Add Flow to your project as a dependency.
Ensure that Flow syntax is stripped from the compiled code.
Add type annotations and run Flow to check them.

We will explain these steps below in detail.

Adding Flow to a Project

First, navigate to your project directory in the terminal. You will need to run
the following command:

       <Mouse render={this.renderTheCat} />
     </div>
   );
 }
}

https://flow.org/
https://www.typescriptlang.org/
https://flow.org/
https://flow.org/en/docs/getting-started/


If you use Yarn, run:

If you use npm, run:

This command installs the latest version of Flow into your project.

Now, add flow to the "scripts" section of your package.json to be able to
use this from the terminal:

{ 
  // ... 
  "scripts": { 
    "flow": "flow", 
    // ... 
  }, 
  // ... 
}

Finally, run one of the following commands:

If you use Yarn, run:

If you use npm, run:

This command will create a Flow configuration file that you will need to
commit.

Stripping Flow Syntax from the Compiled Code

Flow extends the JavaScript language with a special syntax for type
annotations. However, browsers aren’t aware of this syntax, so we need to
make sure it doesn’t end up in the compiled JavaScript bundle that is sent to
the browser.

yarn add --dev flow-bin

npm install --save-dev flow-bin

yarn run flow init

npm run flow init

https://yarnpkg.com/
https://www.npmjs.com/
https://yarnpkg.com/
https://www.npmjs.com/


The exact way to do this depends on the tools you use to compile JavaScript.

Create React App

If your project was set up using Create React App, congratulations! The
Flow annotations are already being stripped by default so you don’t need to
do anything else in this step.

Babel

Note:

These instructions are not for Create React App users. Even though
Create React App uses Babel under the hood, it is already configured to
understand Flow. Only follow this step if you don’t use Create React
App.

If you manually configured Babel for your project, you will need to install a
special preset for Flow.

If you use Yarn, run:

If you use npm, run:

Then add the flow preset to your Babel configuration. For example, if you
configure Babel through .babelrc file, it could look like this:

{ 
  "presets": [ 
    "@babel/preset-flow", 
    "react" 
  ] 
}

This will let you use the Flow syntax in your code.

yarn add --dev @babel/preset-flow

npm install --save-dev @babel/preset-flow

https://github.com/facebookincubator/create-react-app
https://babeljs.io/docs/usage/babelrc/


Note:

Flow does not require the react preset, but they are often used together.
Flow itself understands JSX syntax out of the box.

Other Build Setups

If you don’t use either Create React App or Babel, you can use flow-remove-
types to strip the type annotations.

Running Flow

If you followed the instructions above, you should be able to run Flow for
the first time.

If you use npm, run:

You should see a message like:

No errors! 
✨  Done in 0.17s.

Adding Flow Type Annotations

By default, Flow only checks the files that include this annotation:

Typically it is placed at the top of a file. Try adding it to some files in your
project and run yarn flow or npm run flow to see if Flow already found
any issues.

There is also an option to force Flow to check all files regardless of the
annotation. This can be too noisy for existing projects, but is reasonable for a
new project if you want to fully type it with Flow.

yarn flow

npm run flow

// @flow

https://github.com/flowtype/flow-remove-types
https://flow.org/en/docs/config/options/#toc-all-boolean


Now you’re all set! We recommend to check out the following resources to
learn more about Flow:

Flow Documentation: Type Annotations
Flow Documentation: Editors
Flow Documentation: React
Linting in Flow

TypeScript

TypeScript is a programming language developed by Microsoft. It is a typed
superset of JavaScript, and includes its own compiler. Being a typed
language, TypeScript can catch errors and bugs at build time, long before
your app goes live. You can learn more about using TypeScript with React
here.

To use TypeScript, you need to: * Add TypeScript as a dependency to your
project * Configure the TypeScript compiler options * Use the right file
extensions * Add definitions for libraries you use

Let’s go over these in detail.

Using TypeScript with Create React App

Create React App supports TypeScript out of the box.

To create a new project with TypeScript support, run:

You can also add it to an existing Create React App project, as
documented here.

Note:

If you use Create React App, you can skip the rest of this page. It
describes the manual setup which doesn’t apply to Create React App
users.

npx create-react-app my-app --template typescript

https://flow.org/en/docs/types/
https://flow.org/en/docs/editors/
https://flow.org/en/docs/react/
https://medium.com/flow-type/linting-in-flow-7709d7a7e969
https://www.typescriptlang.org/
https://github.com/Microsoft/TypeScript-React-Starter#typescript-react-starter
https://facebook.github.io/create-react-app/docs/adding-typescript


Adding TypeScript to a Project

It all begins with running one command in your terminal.

If you use Yarn, run:

If you use npm, run:

Congrats! You’ve installed the latest version of TypeScript into your project.
Installing TypeScript gives us access to the tsc command. Before
configuration, let’s add tsc to the “scripts” section in our package.json:

{ 
  // ... 
  "scripts": { 
    "build": "tsc", 
    // ... 
  }, 
  // ... 
}

Configuring the TypeScript Compiler

The compiler is of no help to us until we tell it what to do. In TypeScript,
these rules are defined in a special file called tsconfig.json. To generate
this file:

If you use Yarn, run:

If you use npm, run:

Looking at the now generated tsconfig.json, you can see that there are
many options you can use to configure the compiler. For a detailed

yarn add --dev typescript

npm install --save-dev typescript

yarn run tsc --init

npx tsc --init

https://yarnpkg.com/
https://www.npmjs.com/
https://yarnpkg.com/
https://www.npmjs.com/


description of all the options, check here.

Of the many options, we’ll look at rootDir and outDir. In its true fashion,
the compiler will take in typescript files and generate javascript files.
However we don’t want to get confused with our source files and the
generated output.

We’ll address this in two steps: * Firstly, let’s arrange our project structure
like this. We’ll place all our source code in the src directory.

├── package.json 
├── src 
│   └── index.ts 
└── tsconfig.json

Next, we’ll tell the compiler where our source code is and where the
output should go.

// tsconfig.json 
 
{ 
  "compilerOptions": { 
    // ... 
    "rootDir": "src", 
    "outDir": "build" 
    // ... 
  }, 
}

Great! Now when we run our build script the compiler will output the
generated javascript to the build folder. The TypeScript React Starter
provides a tsconfig.json with a good set of rules to get you started.

Generally, you don’t want to keep the generated javascript in your source
control, so be sure to add the build folder to your .gitignore.

File extensions

In React, you most likely write your components in a .js file. In TypeScript
we have 2 file extensions:

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://github.com/Microsoft/TypeScript-React-Starter/blob/master/tsconfig.json


.ts is the default file extension while .tsx is a special extension used for
files which contain JSX.

Running TypeScript

If you followed the instructions above, you should be able to run TypeScript
for the first time.

If you use npm, run:

If you see no output, it means that it completed successfully.

Type Definitions

To be able to show errors and hints from other packages, the compiler relies
on declaration files. A declaration file provides all the type information
about a library. This enables us to use javascript libraries like those on npm
in our project.

There are two main ways to get declarations for a library:

Bundled - The library bundles its own declaration file. This is great for us,
since all we need to do is install the library, and we can use it right away. To
check if a library has bundled types, look for an index.d.ts file in the
project. Some libraries will have it specified in their package.json under the
typings or types field.

DefinitelyTyped - DefinitelyTyped is a huge repository of declarations for
libraries that don’t bundle a declaration file. The declarations are crowd-
sourced and managed by Microsoft and open source contributors. React for
example doesn’t bundle its own declaration file. Instead we can get it from
DefinitelyTyped. To do so enter this command in your terminal.

yarn build

npm run build

https://github.com/DefinitelyTyped/DefinitelyTyped


Local Declarations Sometimes the package that you want to use doesn’t
bundle declarations nor is it available on DefinitelyTyped. In that case, we
can have a local declaration file. To do this, create a declarations.d.ts file
in the root of your source directory. A simple declaration could look like
this:

You are now ready to code! We recommend to check out the following
resources to learn more about TypeScript:

TypeScript Documentation: Everyday Types
TypeScript Documentation: Migrating from JavaScript
TypeScript Documentation: React and Webpack

ReScript

ReScript is a typed language that compiles to JavaScript. Some of its core
features are guaranteed 100% type coverage, first-class JSX support and
dedicated React bindings to allow integration in existing JS / TS React
codebases.

You can find more infos on integrating ReScript in your existing JS / React
codebase here.

Kotlin

Kotlin is a statically typed language developed by JetBrains. Its target
platforms include the JVM, Android, LLVM, and JavaScript.

## yarn
yarn add --dev @types/react

## npm
npm i --save-dev @types/react

declare module 'querystring' {
 export function stringify(val: object): string
 export function parse(val: string): object
}

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html
https://www.typescriptlang.org/docs/handbook/migrating-from-javascript.html
https://www.typescriptlang.org/docs/handbook/react-&-webpack.html
https://rescript-lang.org/
https://rescript-lang.org/docs/react/latest/introduction
https://rescript-lang.org/docs/manual/latest/installation#integrate-into-an-existing-js-project
https://kotlinlang.org/
https://kotlinlang.org/docs/reference/js-overview.html


JetBrains develops and maintains several tools specifically for the React
community: React bindings as well as Create React Kotlin App. The latter
helps you start building React apps with Kotlin with no build configuration.

Other Languages

Note there are other statically typed languages that compile to JavaScript
and are thus React compatible. For example, F#/Fable with elmish-react.
Check out their respective sites for more information, and feel free to add
more statically typed languages that work with React to this page!

Strict Mode

StrictMode is a tool for highlighting potential problems in an application.
Like Fragment, StrictMode does not render any visible UI. It activates
additional checks and warnings for its descendants.

Note:

Strict mode checks are run in development mode only; they do not
impact the production build.

You can enable strict mode for any part of your application. For example: 
embed:strict-mode/enabling-strict-mode.js

In the above example, strict mode checks will not be run against the Header
and Footer components. However, ComponentOne and ComponentTwo, as
well as all of their descendants, will have the checks.

StrictMode currently helps with: * Identifying components with unsafe
lifecycles * Warning about legacy string ref API usage * Warning about
deprecated findDOMNode usage * Detecting unexpected side effects *
Detecting legacy context API * Ensuring reusable state

Additional functionality will be added with future releases of React.

Identifying unsafe lifecycles

https://github.com/JetBrains/kotlin-wrappers
https://github.com/JetBrains/create-react-kotlin-app
https://fable.io/
https://elmish.github.io/react


As explained in this blog post, certain legacy lifecycle methods are unsafe
for use in async React applications. However, if your application uses third
party libraries, it can be difficult to ensure that these lifecycles aren’t being
used. Fortunately, strict mode can help with this!

When strict mode is enabled, React compiles a list of all class components
using the unsafe lifecycles, and logs a warning message with information
about these components, like so:

Addressing the issues identified by strict mode now will make it easier for
you to take advantage of concurrent rendering in future releases of React.

Warning about legacy string ref API usage

Previously, React provided two ways for managing refs: the legacy string ref
API and the callback API. Although the string ref API was the more
convenient of the two, it had several downsides and so our official
recommendation was to use the callback form instead.

React 16.3 added a third option that offers the convenience of a string ref
without any of the downsides: embed:16-3-release-blog-post/create-
ref-example.js

Since object refs were largely added as a replacement for string refs, strict
mode now warns about usage of string refs.

Note:

Callback refs will continue to be supported in addition to the new 
createRef API.

You don’t need to replace callback refs in your components. They are
slightly more flexible, so they will remain as an advanced feature.

file:///C:/blog/2018/03/27/update-on-async-rendering.html
https://github.com/facebook/react/issues/1373


Learn more about the new createRef API here.

Warning about deprecated findDOMNode usage

React used to support findDOMNode to search the tree for a DOM node given
a class instance. Normally you don’t need this because you can attach a ref
directly to a DOM node.

findDOMNode can also be used on class components but this was breaking
abstraction levels by allowing a parent to demand that certain children were
rendered. It creates a refactoring hazard where you can’t change the
implementation details of a component because a parent might be reaching
into its DOM node. findDOMNode only returns the first child, but with the use
of Fragments, it is possible for a component to render multiple DOM nodes. 
findDOMNode is a one time read API. It only gave you an answer when you
asked for it. If a child component renders a different node, there is no way to
handle this change. Therefore findDOMNode only worked if components
always return a single DOM node that never changes.

You can instead make this explicit by passing a ref to your custom
component and pass that along to the DOM using ref forwarding.

You can also add a wrapper DOM node in your component and attach a ref
directly to it.

class MyComponent extends React.Component { 
  constructor(props) { 
    super(props); 
    this.wrapper = React.createRef(); 
  } 
  render() { 
    return <div ref={this.wrapper}>{this.props.children}</div>; 
  } 
}

Note:

In CSS, the display: contents attribute can be used if you don’t want
the node to be part of the layout.

https://developer.mozilla.org/en-US/docs/Web/CSS/display#display_contents


Detecting unexpected side effects

Conceptually, React does work in two phases: * The render phase
determines what changes need to be made to e.g. the DOM. During this
phase, React calls render and then compares the result to the previous
render. * The commit phase is when React applies any changes. (In the case
of React DOM, this is when React inserts, updates, and removes DOM
nodes.) React also calls lifecycles like componentDidMount and 
componentDidUpdate during this phase.

The commit phase is usually very fast, but rendering can be slow. For this
reason, the upcoming concurrent mode (which is not enabled by default yet)
breaks the rendering work into pieces, pausing and resuming the work to
avoid blocking the browser. This means that React may invoke render phase
lifecycles more than once before committing, or it may invoke them without
committing at all (because of an error or a higher priority interruption).

Render phase lifecycles include the following class component methods: * 
constructor * componentWillMount (or UNSAFE_componentWillMount) * 
componentWillReceiveProps (or UNSAFE_componentWillReceiveProps) * 
componentWillUpdate (or UNSAFE_componentWillUpdate) * 
getDerivedStateFromProps * shouldComponentUpdate * render * 
setState updater functions (the first argument)

Because the above methods might be called more than once, it’s important
that they do not contain side-effects. Ignoring this rule can lead to a variety
of problems, including memory leaks and invalid application state.
Unfortunately, it can be difficult to detect these problems as they can often
be non-deterministic.

Strict mode can’t automatically detect side effects for you, but it can help
you spot them by making them a little more deterministic. This is done by
intentionally double-invoking the following functions:

Class component constructor, render, and shouldComponentUpdate
methods
Class component static getDerivedStateFromProps method
Function component bodies

https://en.wikipedia.org/wiki/Deterministic_algorithm


State updater functions (the first argument to setState)
Functions passed to useState, useMemo, or useReducer

Note:

This only applies to development mode. Lifecycles will not be double-
invoked in production mode.

For example, consider the following code: embed:strict-mode/side-

effects-in-constructor.js

At first glance, this code might not seem problematic. But if 
SharedApplicationState.recordEvent is not idempotent, then
instantiating this component multiple times could lead to invalid application
state. This sort of subtle bug might not manifest during development, or it
might do so inconsistently and so be overlooked.

By intentionally double-invoking methods like the component constructor,
strict mode makes patterns like this easier to spot.

Note:

In React 17, React automatically modifies the console methods like 
console.log() to silence the logs in the second call to lifecycle
functions. However, it may cause undesired behavior in certain cases
where a workaround can be used.

Starting from React 18, React does not suppress any logs. However, if
you have React DevTools installed, the logs from the second call will
appear slightly dimmed. React DevTools also offers a setting (off by
default) to suppress them completely.

Detecting legacy context API

The legacy context API is error-prone, and will be removed in a future major
version. It still works for all 16.x releases but will show this warning
message in strict mode:

https://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
https://github.com/facebook/react/issues/20090#issuecomment-715927125


Read the new context API documentation to help migrate to the new version.

Ensuring reusable state

In the future, we’d like to add a feature that allows React to add and remove
sections of the UI while preserving state. For example, when a user tabs
away from a screen and back, React should be able to immediately show the
previous screen. To do this, React support remounting trees using the same
component state used before unmounting.

This feature will give React better performance out-of-the-box, but requires
components to be resilient to effects being mounted and destroyed multiple
times. Most effects will work without any changes, but some effects do not
properly clean up subscriptions in the destroy callback, or implicitly assume
they are only mounted or destroyed once.

To help surface these issues, React 18 introduces a new development-only
check to Strict Mode. This new check will automatically unmount and
remount every component, whenever a component mounts for the first time,
restoring the previous state on the second mount.

To demonstrate the development behavior you’ll see in Strict Mode with this
feature, consider what happens when React mounts a new component.
Without this change, when a component mounts, React creates the effects:

* React mounts the component. 
  * Layout effects are created. 
  * Effects are created.

With Strict Mode starting in React 18, whenever a component mounts in
development, React will simulate immediately unmounting and remounting
the component:



* React mounts the component. 
    * Layout effects are created. 
    * Effect effects are created. 
* React simulates effects being destroyed on a mounted 
component. 
    * Layout effects are destroyed. 
    * Effects are destroyed. 
* React simulates effects being re-created on a mounted 
component. 
    * Layout effects are created 
    * Effect setup code runs

On the second mount, React will restore the state from the first mount. This
feature simulates user behavior such as a user tabbing away from a screen
and back, ensuring that code will properly handle state restoration.

When the component unmounts, effects are destroyed as normal:

* React unmounts the component. 
  * Layout effects are destroyed. 
  * Effect effects are destroyed.

Unmounting and remounting includes:

componentDidMount

componentWillUnmount

useEffect

useLayoutEffect

useInsertionEffect

Note:

This only applies to development mode, production behavior is
unchanged.

For help supporting common issues, see: - How to support Reusable State in
Effects

Typechecking With PropTypes

Note:

https://github.com/reactwg/react-18/discussions/18


React.PropTypes has moved into a different package since React
v15.5. Please use the prop-types library instead.

We provide a codemod script to automate the conversion.

As your app grows, you can catch a lot of bugs with typechecking. For some
applications, you can use JavaScript extensions like Flow or TypeScript to
typecheck your whole application. But even if you don’t use those, React has
some built-in typechecking abilities. To run typechecking on the props for a
component, you can assign the special propTypes property:

In this example, we are using a class component, but the same functionality
could also be applied to function components, or components created by 
React.memo or React.forwardRef.

PropTypes exports a range of validators that can be used to make sure the
data you receive is valid. In this example, we’re using PropTypes.string.
When an invalid value is provided for a prop, a warning will be shown in the
JavaScript console. For performance reasons, propTypes is only checked in
development mode.

PropTypes

Here is an example documenting the different validators provided:

import PropTypes from 'prop-types';

class Greeting extends React.Component {
 render() {
   return (
     <h1>Hello, {this.props.name}</h1>
   );
 }
}

Greeting.propTypes = {
 name: PropTypes.string
};

https://www.npmjs.com/package/prop-types
file:///C:/blog/2017/04/07/react-v15.5.0.html#migrating-from-reactproptypes
https://flow.org/
https://www.typescriptlang.org/


import PropTypes from 'prop-types';

MyComponent.propTypes = {
 // You can declare that a prop is a specific JS type. By defaul
 // are all optional.
 optionalArray: PropTypes.array,
 optionalBool: PropTypes.bool,
 optionalFunc: PropTypes.func,
 optionalNumber: PropTypes.number,
 optionalObject: PropTypes.object,
 optionalString: PropTypes.string,
 optionalSymbol: PropTypes.symbol,

 // Anything that can be rendered: numbers, strings, elements or
 // (or fragment) containing these types.
 optionalNode: PropTypes.node,

 // A React element.
 optionalElement: PropTypes.element,

 // A React element type (ie. MyComponent).
 optionalElementType: PropTypes.elementType,

 // You can also declare that a prop is an instance of a class. 
 // JS's instanceof operator.
 optionalMessage: PropTypes.instanceOf(Message),

 // You can ensure that your prop is limited to specific values 
 // it as an enum.
 optionalEnum: PropTypes.oneOf(['News', 'Photos']),

 // An object that could be one of many types
 optionalUnion: PropTypes.oneOfType([
   PropTypes.string,
   PropTypes.number,
   PropTypes.instanceOf(Message)
 ]),

 // An array of a certain type
 optionalArrayOf: PropTypes.arrayOf(PropTypes.number),



 // An object with property values of a certain type
 optionalObjectOf: PropTypes.objectOf(PropTypes.number),

 // An object taking on a particular shape
 optionalObjectWithShape: PropTypes.shape({
   color: PropTypes.string,
   fontSize: PropTypes.number
 }),

 // An object with warnings on extra properties
 optionalObjectWithStrictShape: PropTypes.exact({
   name: PropTypes.string,
   quantity: PropTypes.number
 }),   

 // You can chain any of the above with `isRequired` to make sur
 // is shown if the prop isn't provided.
 requiredFunc: PropTypes.func.isRequired,

 // A required value of any data type
 requiredAny: PropTypes.any.isRequired,

 // You can also specify a custom validator. It should return an
 // object if the validation fails. Don't `console.warn` or thro
 // won't work inside `oneOfType`.
 customProp: function(props, propName, componentName) {
   if (!/matchme/.test(props[propName])) {
     return new Error(
       'Invalid prop `' + propName + '` supplied to' +
       ' `' + componentName + '`. Validation failed.'
     );
   }
 },

 // You can also supply a custom validator to `arrayOf` and `obj
 // It should return an Error object if the validation fails. Th
 // will be called for each key in the array or object. The firs
 // arguments of the validator are the array or object itself, a
 // current item's key.
 customArrayProp: PropTypes.arrayOf(function(propValue, key, com
   if (!/matchme/.test(propValue[key])) {
     return new Error(



Requiring Single Child

With PropTypes.element you can specify that only a single child can be
passed to a component as children.

Default Prop Values

You can define default values for your props by assigning to the special 
defaultProps property:

       'Invalid prop `' + propFullName + '` supplied to' +
       ' `' + componentName + '`. Validation failed.'
     );
   }
 })
};

import PropTypes from 'prop-types';

class MyComponent extends React.Component {
 render() {
   // This must be exactly one element or it will warn.
   const children = this.props.children;
   return (
     <div>
       {children}
     </div>
   );
 }
}

MyComponent.propTypes = {
 children: PropTypes.element.isRequired
};

class Greeting extends React.Component {
 render() {
   return (
     <h1>Hello, {this.props.name}</h1>
   );



Since ES2022 you can also declare defaultProps as static property within a
React component class. For more information, see the class public static
fields. This modern syntax will require a compilation step to work within
older browsers.

The defaultProps will be used to ensure that this.props.name will have a
value if it was not specified by the parent component. The propTypes
typechecking happens after defaultProps are resolved, so typechecking will
also apply to the defaultProps.

Function Components

If you are using function components in your regular development, you may
want to make some small changes to allow PropTypes to be properly
applied.

 }
}

// Specifies the default values for props:
Greeting.defaultProps = {
 name: 'Stranger'
};

// Renders "Hello, Stranger":
const root = ReactDOM.createRoot(document.getElementById('example
root.render(<Greeting />);

class Greeting extends React.Component {
 static defaultProps = {
   name: 'stranger'
 }

 render() {
   return (
     <div>Hello, {this.props.name}</div>
   )
 }
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Public_class_fields#public_static_fields


Let’s say you have a component like this:

To add PropTypes, you may want to declare the component in a separate
function before exporting, like this:

Then, you can add PropTypes directly to the HelloWorldComponent:

Uncontrolled Components

In most cases, we recommend using controlled components to implement
forms. In a controlled component, form data is handled by a React

export default function HelloWorldComponent({ name }) {
 return (
   <div>Hello, {name}</div>
 )
}

function HelloWorldComponent({ name }) {
 return (
   <div>Hello, {name}</div>
 )
}

export default HelloWorldComponent

import PropTypes from 'prop-types'

function HelloWorldComponent({ name }) {
 return (
   <div>Hello, {name}</div>
 )
}

HelloWorldComponent.propTypes = {
 name: PropTypes.string
}

export default HelloWorldComponent



component. The alternative is uncontrolled components, where form data is
handled by the DOM itself.

To write an uncontrolled component, instead of writing an event handler for
every state update, you can use a ref to get form values from the DOM.

For example, this code accepts a single name in an uncontrolled component:

class NameForm extends React.Component { 
  constructor(props) { 
    super(props); 
    this.handleSubmit = this.handleSubmit.bind(this); 
    this.input = React.createRef(); 
  } 
 
  handleSubmit(event) { 
    alert('A name was submitted: ' + this.input.current.value); 
    event.preventDefault(); 
  } 
 
  render() { 
    return ( 
      <form onSubmit={this.handleSubmit}> 
        <label> 
          Name: 
          <input type="text" ref={this.input} /> 
        </label> 
        <input type="submit" value="Submit" /> 
      </form> 
    ); 
  } 
}

Try it on CodePen

Since an uncontrolled component keeps the source of truth in the DOM, it is
sometimes easier to integrate React and non-React code when using
uncontrolled components. It can also be slightly less code if you want to be
quick and dirty. Otherwise, you should usually use controlled components.

If it’s still not clear which type of component you should use for a particular
situation, you might find this article on controlled versus uncontrolled inputs
to be helpful.

https://codepen.io/gaearon/pen/WooRWa?editors=0010
https://goshakkk.name/controlled-vs-uncontrolled-inputs-react/


Default Values

In the React rendering lifecycle, the value attribute on form elements will
override the value in the DOM. With an uncontrolled component, you often
want React to specify the initial value, but leave subsequent updates
uncontrolled. To handle this case, you can specify a defaultValue attribute
instead of value. Changing the value of defaultValue attribute after a
component has mounted will not cause any update of the value in the DOM.

render() { 
  return ( 
    <form onSubmit={this.handleSubmit}> 
      <label> 
        Name: 
        <input 
          defaultValue="Bob" 
          type="text" 
          ref={this.input} /> 
      </label> 
      <input type="submit" value="Submit" /> 
    </form> 
  ); 
}

Likewise, <input type="checkbox"> and <input type="radio"> support 
defaultChecked, and <select> and <textarea> supports defaultValue.

The file input Tag

In HTML, an <input type="file"> lets the user choose one or more files
from their device storage to be uploaded to a server or manipulated by
JavaScript via the File API.

In React, an <input type="file" /> is always an uncontrolled component
because its value can only be set by a user, and not programmatically.

You should use the File API to interact with the files. The following example
shows how to create a ref to the DOM node to access file(s) in a submit
handler:

<input type="file" />

https://developer.mozilla.org/en-US/docs/Web/API/File/Using_files_from_web_applications


embed:uncontrolled-components/input-type-file.js

Web Components

React and Web Components are built to solve different problems. Web
Components provide strong encapsulation for reusable components, while
React provides a declarative library that keeps the DOM in sync with your
data. The two goals are complementary. As a developer, you are free to use
React in your Web Components, or to use Web Components in React, or
both.

Most people who use React don’t use Web Components, but you may want
to, especially if you are using third-party UI components that are written
using Web Components.

Using Web Components in React

Note:

Web Components often expose an imperative API. For instance, a 
video Web Component might expose play() and pause() functions.
To access the imperative APIs of a Web Component, you will need to
use a ref to interact with the DOM node directly. If you are using third-
party Web Components, the best solution is to write a React component
that behaves as a wrapper for your Web Component.

Events emitted by a Web Component may not properly propagate
through a React render tree. You will need to manually attach event
handlers to handle these events within your React components.

class HelloMessage extends React.Component {
 render() {
   return <div>Hello <x-search>{this.props.name}</x-search>!</di
 }
}

https://developer.mozilla.org/en-US/docs/Web/Web_Components


One common confusion is that Web Components use “class” instead of
“className”.

Using React in your Web Components

Note:

This code will not work if you transform classes with Babel. See this
issue for the discussion. Include the custom-elements-es5-adapter
before you load your web components to fix this issue.

function BrickFlipbox() {
 return (
   <brick-flipbox class="demo">
     <div>front</div>
     <div>back</div>
   </brick-flipbox>
 );
}

class XSearch extends HTMLElement {
 connectedCallback() {
   const mountPoint = document.createElement('span');
   this.attachShadow({ mode: 'open' }).appendChild(mountPoint);

   const name = this.getAttribute('name');
   const url = 'https://www.google.com/search?q=' + encodeURICom
   const root = ReactDOM.createRoot(mountPoint);
   root.render(<a href={url}>{name}</a>);
 }
}
customElements.define('x-search', XSearch);

https://github.com/w3c/webcomponents/issues/587
https://github.com/webcomponents/polyfills/tree/master/packages/webcomponentsjs#custom-elements-es5-adapterjs


API Reference
React Top-Level API

React is the entry point to the React library. If you load React from a 
<script> tag, these top-level APIs are available on the React global. If you
use ES6 with npm, you can write import React from 'react'. If you use
ES5 with npm, you can write var React = require('react').

Overview

Components

React components let you split the UI into independent, reusable pieces,
and think about each piece in isolation. React components can be defined
by subclassing React.Component or React.PureComponent.

React.Component

React.PureComponent

If you don’t use ES6 classes, you may use the create-react-class module
instead. See Using React without ES6 for more information.

React components can also be defined as functions which can be wrapped:

React.memo

Creating React Elements

We recommend using JSX to describe what your UI should look like. Each
JSX element is just syntactic sugar for calling React.createElement().
You will not typically invoke the following methods directly if you are
using JSX.



createElement()

createFactory()

See Using React without JSX for more information.

Transforming Elements

React provides several APIs for manipulating elements:

cloneElement()

isValidElement()

React.Children

Fragments

React also provides a component for rendering multiple elements without a
wrapper.

React.Fragment

Refs

React.createRef

React.forwardRef

Suspense

Suspense lets components “wait” for something before rendering. Today,
Suspense only supports one use case: loading components dynamically with
React.lazy. In the future, it will support other use cases like data fetching.

React.lazy

React.Suspense

Transitions



Transitions are a new concurrent feature introduced in React 18. They allow
you to mark updates as transitions, which tells React that they can be
interrupted and avoid going back to Suspense fallbacks for already visible
content.

React.startTransition

React.useTransition

Hooks

Hooks are a new addition in React 16.8. They let you use state and other
React features without writing a class. Hooks have a dedicated docs section
and a separate API reference:

Basic Hooks
useState

useEffect

useContext

Additional Hooks
useReducer

useCallback

useMemo

useRef

useImperativeHandle

useLayoutEffect

useDebugValue

useDeferredValue

useTransition

useId

Library Hooks
useSyncExternalStore

useInsertionEffect

Reference

React.Component



React.Component is the base class for React components when they are
defined using ES6 classes:

See the React.Component API Reference for a list of methods and
properties related to the base React.Component class.

React.PureComponent

React.PureComponent is similar to React.Component. The difference
between them is that React.Component doesn’t implement 
shouldComponentUpdate(), but React.PureComponent implements it with
a shallow prop and state comparison.

If your React component’s render() function renders the same result given
the same props and state, you can use React.PureComponent for a
performance boost in some cases.

Note

React.PureComponent’s shouldComponentUpdate() only shallowly
compares the objects. If these contain complex data structures, it may
produce false-negatives for deeper differences. Only extend 
PureComponent when you expect to have simple props and state, or use
forceUpdate() when you know deep data structures have changed.
Or, consider using immutable objects to facilitate fast comparisons of
nested data.

Furthermore, React.PureComponent’s shouldComponentUpdate()

skips prop updates for the whole component subtree. Make sure all the
children components are also “pure”.

class Greeting extends React.Component {
 render() {
   return <h1>Hello, {this.props.name}</h1>;
 }
}

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Classes
https://immutable-js.com/


React.memo

React.memo is a higher order component.

If your component renders the same result given the same props, you can
wrap it in a call to React.memo for a performance boost in some cases by
memoizing the result. This means that React will skip rendering the
component, and reuse the last rendered result.

React.memo only checks for prop changes. If your function component
wrapped in React.memo has a useState, useReducer or useContext Hook
in its implementation, it will still rerender when state or context change.

By default it will only shallowly compare complex objects in the props
object. If you want control over the comparison, you can also provide a
custom comparison function as the second argument.

This method only exists as a performance optimization. Do not rely on it
to “prevent” a render, as this can lead to bugs.

Note

Unlike the shouldComponentUpdate() method on class components,
the areEqual function returns true if the props are equal and false if

const MyComponent = React.memo(function MyComponent(props) {
 /* render using props */
});

function MyComponent(props) {
 /* render using props */
}
function areEqual(prevProps, nextProps) {
 /*
 return true if passing nextProps to render would return
 the same result as passing prevProps to render,
 otherwise return false
 */
}
export default React.memo(MyComponent, areEqual);



the props are not equal. This is the inverse from 
shouldComponentUpdate.

createElement()

Create and return a new React element of the given type. The type argument
can be either a tag name string (such as 'div' or 'span'), a React
component type (a class or a function), or a React fragment type.

Code written with JSX will be converted to use React.createElement().
You will not typically invoke React.createElement() directly if you are
using JSX. See React Without JSX to learn more.

cloneElement()

React.cloneElement( 
  element, 
  [config], 
  [...children] 
)

Clone and return a new React element using element as the starting point. 
config should contain all new props, key, or ref. The resulting element
will have the original element’s props with the new props merged in
shallowly. New children will replace existing children. key and ref from
the original element will be preserved if no key and ref present in the 
config.

React.cloneElement() is almost equivalent to:

React.createElement(
 type,
 [props],
 [...children]
)

<element.type {...element.props} {...props}>{children}</element.



However, it also preserves refs. This means that if you get a child with a 
ref on it, you won’t accidentally steal it from your ancestor. You will get
the same ref attached to your new element. The new ref or key will
replace old ones if present.

This API was introduced as a replacement of the deprecated 
React.addons.cloneWithProps().

createFactory()

Return a function that produces React elements of a given type. Like 
React.createElement(), the type argument can be either a tag name string
(such as 'div' or 'span'), a React component type (a class or a function),
or a React fragment type.

This helper is considered legacy, and we encourage you to either use JSX or
use React.createElement() directly instead.

You will not typically invoke React.createFactory() directly if you are
using JSX. See React Without JSX to learn more.

isValidElement()

Verifies the object is a React element. Returns true or false.

React.Children

React.Children provides utilities for dealing with the 
this.props.children opaque data structure.

React.createFactory(type)

React.isValidElement(object)



React.Children.map

Invokes a function on every immediate child contained within children
with this set to thisArg. If children is an array it will be traversed and the
function will be called for each child in the array. If children is null or 
undefined, this method will return null or undefined rather than an array.

Note

If children is a Fragment it will be treated as a single child and not
traversed.

React.Children.forEach

Like React.Children.map() but does not return an array.

React.Children.count

Returns the total number of components in children, equal to the number
of times that a callback passed to map or forEach would be invoked.

React.Children.only

Verifies that children has only one child (a React element) and returns it.
Otherwise this method throws an error.

Note:

React.Children.only() does not accept the return value of 
React.Children.map() because it is an array rather than a React
element.

React.Children.map(children, function[(thisArg)])

React.Children.forEach(children, function[(thisArg)])

React.Children.count(children)

React.Children.only(children)



React.Children.toArray

Returns the children opaque data structure as a flat array with keys
assigned to each child. Useful if you want to manipulate collections of
children in your render methods, especially if you want to reorder or slice 
this.props.children before passing it down.

Note:

React.Children.toArray() changes keys to preserve the semantics of
nested arrays when flattening lists of children. That is, toArray
prefixes each key in the returned array so that each element’s key is
scoped to the input array containing it.

React.Fragment

The React.Fragment component lets you return multiple elements in a 
render() method without creating an additional DOM element:

You can also use it with the shorthand <></> syntax. For more information,
see React v16.2.0: Improved Support for Fragments.

React.createRef

React.createRef creates a ref that can be attached to React elements via
the ref attribute. embed:16-3-release-blog-post/create-ref-

React.Children.toArray(children)

render() {
 return (
   <React.Fragment>
     Some text.
     <h2>A heading</h2>
   </React.Fragment>
 );
}

file:///C:/blog/2017/11/28/react-v16.2.0-fragment-support.html


example.js

React.forwardRef

React.forwardRef creates a React component that forwards the ref
attribute it receives to another component below in the tree. This technique
is not very common but is particularly useful in two scenarios:

Forwarding refs to DOM components
Forwarding refs in higher-order-components

React.forwardRef accepts a rendering function as an argument. React will
call this function with props and ref as two arguments. This function
should return a React node.

embed:reference-react-forward-ref.js

In the above example, React passes a ref given to <FancyButton ref=
{ref}> element as a second argument to the rendering function inside the 
React.forwardRef call. This rendering function passes the ref to the 
<button ref={ref}> element.

As a result, after React attaches the ref, ref.current will point directly to
the <button> DOM element instance.

For more information, see forwarding refs.

React.lazy

React.lazy() lets you define a component that is loaded dynamically. This
helps reduce the bundle size to delay loading components that aren’t used
during the initial render.

You can learn how to use it from our code splitting documentation. You
might also want to check out this article explaining how to use it in more
detail.

// This component is loaded dynamically

https://medium.com/@pomber/lazy-loading-and-preloading-components-in-react-16-6-804de091c82d


Note that rendering lazy components requires that there’s a 
<React.Suspense> component higher in the rendering tree. This is how you
specify a loading indicator.

React.Suspense

React.Suspense lets you specify the loading indicator in case some
components in the tree below it are not yet ready to render. In the future we
plan to let Suspense handle more scenarios such as data fetching. You can
read about this in our roadmap.

Today, lazy loading components is the only use case supported by 
<React.Suspense>:

It is documented in our code splitting guide. Note that lazy components can
be deep inside the Suspense tree – it doesn’t have to wrap every one of
them. The best practice is to place <Suspense> where you want to see a
loading indicator, but to use lazy() wherever you want to do code splitting.

Note

const SomeComponent = React.lazy(() => import('./SomeComponent')

// This component is loaded dynamically
const OtherComponent = React.lazy(() => import('./OtherComponent

function MyComponent() {
 return (
   // Displays <Spinner> until OtherComponent loads
   <React.Suspense fallback={<Spinner />}>
     <div>
       <OtherComponent />
     </div>
   </React.Suspense>

 );
}

file:///C:/blog/2018/11/27/react-16-roadmap.html


For content that is already shown to the user, switching back to a
loading indicator can be disorienting. It is sometimes better to show
the “old” UI while the new UI is being prepared. To do this, you can
use the new transition APIs startTransition and useTransition to
mark updates as transitions and avoid unexpected fallbacks.

React.Suspense in Server Side Rendering

During server side rendering Suspense Boundaries allow you to flush your
application in smaller chunks by suspending. When a component suspends
we schedule a low priority task to render the closest Suspense boundary’s
fallback. If the component unsuspends before we flush the fallback then we
send down the actual content and throw away the fallback.

React.Suspense during hydration

Suspense boundaries depend on their parent boundaries being hydrated
before they can hydrate, but they can hydrate independently from sibling
boundaries. Events on a boundary before its hydrated will cause the
boundary to hydrate at a higher priority than neighboring boundaries. Read
more

React.startTransition

React.startTransition lets you mark updates inside the provided
callback as transitions. This method is designed to be used when 
React.useTransition is not available.

Note:

Updates in a transition yield to more urgent updates such as clicks.

Updates in a transition will not show a fallback for re-suspended
content, allowing the user to continue interacting while rendering the
update.

React.startTransition(callback)

https://github.com/reactwg/react-18/discussions/130


React.startTransition does not provide an isPending flag. To track
the pending status of a transition see React.useTransition.

React.Component

This page contains a detailed API reference for the React component class
definition. It assumes you’re familiar with fundamental React concepts,
such as Components and Props, as well as State and Lifecycle. If you’re
not, read them first.

Overview

React lets you define components as classes or functions. Components
defined as classes currently provide more features which are described in
detail on this page. To define a React component class, you need to extend 
React.Component:

The only method you must define in a React.Component subclass is called 
render(). All the other methods described on this page are optional.

We strongly recommend against creating your own base component
classes. In React components, code reuse is primarily achieved through
composition rather than inheritance.

Note:

React doesn’t force you to use the ES6 class syntax. If you prefer to
avoid it, you may use the create-react-class module or a similar
custom abstraction instead. Take a look at Using React without ES6 to
learn more.

The Component Lifecycle

class Welcome extends React.Component {
 render() {
   return <h1>Hello, {this.props.name}</h1>;
 }
}



Each component has several “lifecycle methods” that you can override to
run code at particular times in the process. You can use this lifecycle
diagram as a cheat sheet. In the list below, commonly used lifecycle
methods are marked as bold. The rest of them exist for relatively rare use
cases.

Mounting

These methods are called in the following order when an instance of a
component is being created and inserted into the DOM:

constructor()
static getDerivedStateFromProps()

render()
componentDidMount()

Note:

This method is considered legacy and you should avoid it in new code:

UNSAFE_componentWillMount()

Updating

An update can be caused by changes to props or state. These methods are
called in the following order when a component is being re-rendered:

static getDerivedStateFromProps()

shouldComponentUpdate()

render()
getSnapshotBeforeUpdate()

componentDidUpdate()

Note:

These methods are considered legacy and you should avoid them in
new code:

https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
file:///C:/blog/2018/03/27/update-on-async-rendering.html
file:///C:/blog/2018/03/27/update-on-async-rendering.html


UNSAFE_componentWillUpdate()

UNSAFE_componentWillReceiveProps()

Unmounting

This method is called when a component is being removed from the DOM:

componentWillUnmount()

Error Handling

These methods are called when there is an error during rendering, in a
lifecycle method, or in the constructor of any child component.

static getDerivedStateFromError()

componentDidCatch()

Other APIs

Each component also provides some other APIs:

setState()

forceUpdate()

Class Properties

defaultProps

displayName

Instance Properties

props

state

Reference



Commonly Used Lifecycle Methods

The methods in this section cover the vast majority of use cases you’ll
encounter creating React components. For a visual reference, check out
this lifecycle diagram.

render()

The render() method is the only required method in a class component.

When called, it should examine this.props and this.state and return one
of the following types:

React elements. Typically created via JSX. For example, <div /> and 
<MyComponent /> are React elements that instruct React to render a
DOM node, or another user-defined component, respectively.
Arrays and fragments. Let you return multiple elements from render.
See the documentation on fragments for more details.
Portals. Let you render children into a different DOM subtree. See the
documentation on portals for more details.
String and numbers. These are rendered as text nodes in the DOM.
Booleans or null. Render nothing. (Mostly exists to support return 
test && <Child /> pattern, where test is boolean.)

The render() function should be pure, meaning that it does not modify
component state, it returns the same result each time it’s invoked, and it
does not directly interact with the browser.

If you need to interact with the browser, perform your work in 
componentDidMount() or the other lifecycle methods instead. Keeping 
render() pure makes components easier to think about.

Note

render() will not be invoked if shouldComponentUpdate() returns
false.

render()

https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/


constructor()

If you don’t initialize state and you don’t bind methods, you don’t need
to implement a constructor for your React component.

The constructor for a React component is called before it is mounted. When
implementing the constructor for a React.Component subclass, you should
call super(props) before any other statement. Otherwise, this.props will
be undefined in the constructor, which can lead to bugs.

Typically, in React constructors are only used for two purposes:

Initializing local state by assigning an object to this.state.
Binding event handler methods to an instance.

You should not call setState() in the constructor(). Instead, if your
component needs to use local state, assign the initial state to this.state
directly in the constructor:

Constructor is the only place where you should assign this.state directly.
In all other methods, you need to use this.setState() instead.

Avoid introducing any side-effects or subscriptions in the constructor. For
those use cases, use componentDidMount() instead.

Note

Avoid copying props into state! This is a common mistake:

constructor(props)

constructor(props) {
 super(props);
 // Don't call this.setState() here!
 this.state = { counter: 0 };
 this.handleClick = this.handleClick.bind(this);
}



The problem is that it’s both unnecessary (you can use 
this.props.color directly instead), and creates bugs (updates to the 
color prop won’t be reflected in the state).

Only use this pattern if you intentionally want to ignore prop
updates. In that case, it makes sense to rename the prop to be called 
initialColor or defaultColor. You can then force a component to
“reset” its internal state by changing its key when necessary.

Read our blog post on avoiding derived state to learn about what to do
if you think you need some state to depend on the props.

componentDidMount()

componentDidMount() is invoked immediately after a component is
mounted (inserted into the tree). Initialization that requires DOM nodes
should go here. If you need to load data from a remote endpoint, this is a
good place to instantiate the network request.

This method is a good place to set up any subscriptions. If you do that,
don’t forget to unsubscribe in componentWillUnmount().

You may call setState() immediately in componentDidMount(). It will
trigger an extra rendering, but it will happen before the browser updates the
screen. This guarantees that even though the render() will be called twice
in this case, the user won’t see the intermediate state. Use this pattern with
caution because it often causes performance issues. In most cases, you
should be able to assign the initial state in the constructor() instead. It
can, however, be necessary for cases like modals and tooltips when you

constructor(props) {
super(props);
// Don't do this!
this.state = { color: props.color };
}

componentDidMount()

file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#recommendation-fully-uncontrolled-component-with-a-key
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html


need to measure a DOM node before rendering something that depends on
its size or position.

componentDidUpdate()

componentDidUpdate() is invoked immediately after updating occurs. This
method is not called for the initial render.

Use this as an opportunity to operate on the DOM when the component has
been updated. This is also a good place to do network requests as long as
you compare the current props to previous props (e.g. a network request
may not be necessary if the props have not changed).

You may call setState() immediately in componentDidUpdate() but note
that it must be wrapped in a condition like in the example above, or
you’ll cause an infinite loop. It would also cause an extra re-rendering
which, while not visible to the user, can affect the component performance.
If you’re trying to “mirror” some state to a prop coming from above,
consider using the prop directly instead. Read more about why copying
props into state causes bugs.

If your component implements the getSnapshotBeforeUpdate() lifecycle
(which is rare), the value it returns will be passed as a third “snapshot”
parameter to componentDidUpdate(). Otherwise this parameter will be
undefined.

Note

componentDidUpdate(prevProps, prevState, snapshot)

componentDidUpdate(prevProps) {
 // Typical usage (don't forget to compare props):
 if (this.props.userID !== prevProps.userID) {
   this.fetchData(this.props.userID);
 }
}

file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html


componentDidUpdate() will not be invoked if 
shouldComponentUpdate() returns false.

componentWillUnmount()

componentWillUnmount() is invoked immediately before a component is
unmounted and destroyed. Perform any necessary cleanup in this method,
such as invalidating timers, canceling network requests, or cleaning up any
subscriptions that were created in componentDidMount().

You should not call setState() in componentWillUnmount() because the
component will never be re-rendered. Once a component instance is
unmounted, it will never be mounted again.

Rarely Used Lifecycle Methods

The methods in this section correspond to uncommon use cases. They’re
handy once in a while, but most of your components probably don’t need
any of them. You can see most of the methods below on this lifecycle
diagram if you click the “Show less common lifecycles” checkbox at the
top of it.

shouldComponentUpdate()

Use shouldComponentUpdate() to let React know if a component’s output
is not affected by the current change in state or props. The default behavior
is to re-render on every state change, and in the vast majority of cases you
should rely on the default behavior.

shouldComponentUpdate() is invoked before rendering when new props or
state are being received. Defaults to true. This method is not called for the

componentWillUnmount()

shouldComponentUpdate(nextProps, nextState)

https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/


initial render or when forceUpdate() is used.

This method only exists as a performance optimization. Do not rely on it
to “prevent” a rendering, as this can lead to bugs. Consider using the built-
in PureComponent instead of writing shouldComponentUpdate() by hand. 
PureComponent performs a shallow comparison of props and state, and
reduces the chance that you’ll skip a necessary update.

If you are confident you want to write it by hand, you may compare 
this.props with nextProps and this.state with nextState and return 
false to tell React the update can be skipped. Note that returning false
does not prevent child components from re-rendering when their state
changes.

We do not recommend doing deep equality checks or using 
JSON.stringify() in shouldComponentUpdate(). It is very inefficient and
will harm performance.

Currently, if shouldComponentUpdate() returns false, then 
UNSAFE_componentWillUpdate(), render(), and componentDidUpdate()
will not be invoked. In the future React may treat 
shouldComponentUpdate() as a hint rather than a strict directive, and
returning false may still result in a re-rendering of the component.

static getDerivedStateFromProps()

getDerivedStateFromProps is invoked right before calling the render
method, both on the initial mount and on subsequent updates. It should
return an object to update the state, or null to update nothing.

This method exists for rare use cases where the state depends on changes in
props over time. For example, it might be handy for implementing a 
<Transition> component that compares its previous and next children to
decide which of them to animate in and out.

static getDerivedStateFromProps(props, state)

file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#when-to-use-derived-state


Deriving state leads to verbose code and makes your components difficult
to think about. Make sure you’re familiar with simpler alternatives:

If you need to perform a side effect (for example, data fetching or an
animation) in response to a change in props, use componentDidUpdate
lifecycle instead.

If you want to re-compute some data only when a prop changes, use
a memoization helper instead.

If you want to “reset” some state when a prop changes, consider
either making a component fully controlled or fully uncontrolled with
a key instead.

This method doesn’t have access to the component instance. If you’d like,
you can reuse some code between getDerivedStateFromProps() and the
other class methods by extracting pure functions of the component props
and state outside the class definition.

Note that this method is fired on every render, regardless of the cause. This
is in contrast to UNSAFE_componentWillReceiveProps, which only fires
when the parent causes a re-render and not as a result of a local setState.

getSnapshotBeforeUpdate()

getSnapshotBeforeUpdate() is invoked right before the most recently
rendered output is committed to e.g. the DOM. It enables your component
to capture some information from the DOM (e.g. scroll position) before it is
potentially changed. Any value returned by this lifecycle method will be
passed as a parameter to componentDidUpdate().

This use case is not common, but it may occur in UIs like a chat thread that
need to handle scroll position in a special way.

A snapshot value (or null) should be returned.

getSnapshotBeforeUpdate(prevProps, prevState)

file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#what-about-memoization
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#recommendation-fully-controlled-component
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#recommendation-fully-uncontrolled-component-with-a-key


For example:

embed:react-component-reference/get-snapshot-before-update.js

In the above examples, it is important to read the scrollHeight property in 
getSnapshotBeforeUpdate because there may be delays between “render”
phase lifecycles (like render) and “commit” phase lifecycles (like 
getSnapshotBeforeUpdate and componentDidUpdate).

Error boundaries

Error boundaries are React components that catch JavaScript errors
anywhere in their child component tree, log those errors, and display a
fallback UI instead of the component tree that crashed. Error boundaries
catch errors during rendering, in lifecycle methods, and in constructors of
the whole tree below them.

A class component becomes an error boundary if it defines either (or both)
of the lifecycle methods static getDerivedStateFromError() or 
componentDidCatch(). Updating state from these lifecycles lets you
capture an unhandled JavaScript error in the below tree and display a
fallback UI.

Only use error boundaries for recovering from unexpected exceptions;
don’t try to use them for control flow.

For more details, see Error Handling in React 16.

Note

Error boundaries only catch errors in the components below them in
the tree. An error boundary can’t catch an error within itself.

static getDerivedStateFromError()

static getDerivedStateFromError(error)

file:///C:/blog/2017/07/26/error-handling-in-react-16.html


This lifecycle is invoked after an error has been thrown by a descendant
component. It receives the error that was thrown as a parameter and should
return a value to update state.

class ErrorBoundary extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { hasError: false }; 
  } 
 
  static getDerivedStateFromError(error) { 
    // Update state so the next render will show the fallback 
UI. 
    return { hasError: true }; 
  } 
 
  render() { 
    if (this.state.hasError) { 
      // You can render any custom fallback UI 
      return <h1>Something went wrong.</h1>; 
    } 
 
    return this.props.children; 
  } 
}

Note

getDerivedStateFromError() is called during the “render” phase, so
side-effects are not permitted. For those use cases, use 
componentDidCatch() instead.

componentDidCatch()

This lifecycle is invoked after an error has been thrown by a descendant
component. It receives two parameters:

1. error - The error that was thrown.

componentDidCatch(error, info)



2. info - An object with a componentStack key containing information
about which component threw the error.

componentDidCatch() is called during the “commit” phase, so side-effects
are permitted. It should be used for things like logging errors:

class ErrorBoundary extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { hasError: false }; 
  } 
 
  static getDerivedStateFromError(error) { 
    // Update state so the next render will show the fallback 
UI. 
    return { hasError: true }; 
  } 
 
  componentDidCatch(error, info) { 
    // Example "componentStack": 
    //   in ComponentThatThrows (created by App) 
    //   in ErrorBoundary (created by App) 
    //   in div (created by App) 
    //   in App 
    logComponentStackToMyService(info.componentStack); 
  } 
 
  render() { 
    if (this.state.hasError) { 
      // You can render any custom fallback UI 
      return <h1>Something went wrong.</h1>; 
    } 
 
    return this.props.children; 
  } 
}

Production and development builds of React slightly differ in the way 
componentDidCatch() handles errors.

On development, the errors will bubble up to window, this means that any 
window.onerror or window.addEventListener('error', callback) will
intercept the errors that have been caught by componentDidCatch().



On production, instead, the errors will not bubble up, which means any
ancestor error handler will only receive errors not explicitly caught by 
componentDidCatch().

Note

In the event of an error, you can render a fallback UI with 
componentDidCatch() by calling setState, but this will be deprecated
in a future release. Use static getDerivedStateFromError() to
handle fallback rendering instead.

Legacy Lifecycle Methods

The lifecycle methods below are marked as “legacy”. They still work, but
we don’t recommend using them in the new code. You can learn more about
migrating away from legacy lifecycle methods in this blog post.

UNSAFE_componentWillMount()

Note

This lifecycle was previously named componentWillMount. That name
will continue to work until version 17. Use the rename-unsafe-
lifecycles codemod to automatically update your components.

UNSAFE_componentWillMount() is invoked just before mounting occurs. It
is called before render(), therefore calling setState() synchronously in
this method will not trigger an extra rendering. Generally, we recommend
using the constructor() instead for initializing state.

Avoid introducing any side-effects or subscriptions in this method. For
those use cases, use componentDidMount() instead.

This is the only lifecycle method called on server rendering.

UNSAFE_componentWillMount()

file:///C:/blog/2018/03/27/update-on-async-rendering.html
https://github.com/reactjs/react-codemod#rename-unsafe-lifecycles


UNSAFE_componentWillReceiveProps()

Note

This lifecycle was previously named componentWillReceiveProps.
That name will continue to work until version 17. Use the rename-
unsafe-lifecycles codemod to automatically update your
components.

Note:

Using this lifecycle method often leads to bugs and inconsistencies

If you need to perform a side effect (for example, data fetching
or an animation) in response to a change in props, use 
componentDidUpdate lifecycle instead.
If you used componentWillReceiveProps for re-computing
some data only when a prop changes, use a memoization helper
instead.
If you used componentWillReceiveProps to “reset” some state
when a prop changes, consider either making a component fully
controlled or fully uncontrolled with a key instead.

For other use cases, follow the recommendations in this blog post
about derived state.

UNSAFE_componentWillReceiveProps() is invoked before a mounted
component receives new props. If you need to update the state in response
to prop changes (for example, to reset it), you may compare this.props
and nextProps and perform state transitions using this.setState() in this
method.

Note that if a parent component causes your component to re-render, this
method will be called even if props have not changed. Make sure to
compare the current and next values if you only want to handle changes.

UNSAFE_componentWillReceiveProps(nextProps)

https://github.com/reactjs/react-codemod#rename-unsafe-lifecycles
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#what-about-memoization
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#recommendation-fully-controlled-component
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html#recommendation-fully-uncontrolled-component-with-a-key
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html


React doesn’t call UNSAFE_componentWillReceiveProps() with initial
props during mounting. It only calls this method if some of component’s
props may update. Calling this.setState() generally doesn’t trigger 
UNSAFE_componentWillReceiveProps().

UNSAFE_componentWillUpdate()

Note

This lifecycle was previously named componentWillUpdate. That
name will continue to work until version 17. Use the rename-unsafe-
lifecycles codemod to automatically update your components.

UNSAFE_componentWillUpdate() is invoked just before rendering when
new props or state are being received. Use this as an opportunity to perform
preparation before an update occurs. This method is not called for the initial
render.

Note that you cannot call this.setState() here; nor should you do
anything else (e.g. dispatch a Redux action) that would trigger an update to
a React component before UNSAFE_componentWillUpdate() returns.

Typically, this method can be replaced by componentDidUpdate(). If you
were reading from the DOM in this method (e.g. to save a scroll position),
you can move that logic to getSnapshotBeforeUpdate().

Note

UNSAFE_componentWillUpdate() will not be invoked if 
shouldComponentUpdate() returns false.

Other APIs

UNSAFE_componentWillUpdate(nextProps, nextState)

https://github.com/reactjs/react-codemod#rename-unsafe-lifecycles


Unlike the lifecycle methods above (which React calls for you), the
methods below are the methods you can call from your components.

There are just two of them: setState() and forceUpdate().

setState()

setState() enqueues changes to the component state and tells React that
this component and its children need to be re-rendered with the updated
state. This is the primary method you use to update the user interface in
response to event handlers and server responses.

Think of setState() as a request rather than an immediate command to
update the component. For better perceived performance, React may delay
it, and then update several components in a single pass. In the rare case that
you need to force the DOM update to be applied synchronously, you may
wrap it in flushSync, but this may hurt performance.

setState() does not always immediately update the component. It may
batch or defer the update until later. This makes reading this.state right
after calling setState() a potential pitfall. Instead, use 
componentDidUpdate or a setState callback (setState(updater, 
callback)), either of which are guaranteed to fire after the update has been
applied. If you need to set the state based on the previous state, read about
the updater argument below.

setState() will always lead to a re-render unless 
shouldComponentUpdate() returns false. If mutable objects are being used
and conditional rendering logic cannot be implemented in 
shouldComponentUpdate(), calling setState() only when the new state
differs from the previous state will avoid unnecessary re-renders.

The first argument is an updater function with the signature:

setState(updater[, callback])

(state, props) => stateChange



state is a reference to the component state at the time the change is being
applied. It should not be directly mutated. Instead, changes should be
represented by building a new object based on the input from state and 
props. For instance, suppose we wanted to increment a value in state by 
props.step:

Both state and props received by the updater function are guaranteed to be
up-to-date. The output of the updater is shallowly merged with state.

The second parameter to setState() is an optional callback function that
will be executed once setState is completed and the component is re-
rendered. Generally we recommend using componentDidUpdate() for such
logic instead.

You may optionally pass an object as the first argument to setState()
instead of a function:

This performs a shallow merge of stateChange into the new state, e.g., to
adjust a shopping cart item quantity:

This form of setState() is also asynchronous, and multiple calls during
the same cycle may be batched together. For example, if you attempt to
increment an item quantity more than once in the same cycle, that will
result in the equivalent of:

this.setState((state, props) => {
 return {counter: state.counter + props.step};
});

setState(stateChange[, callback])

this.setState({quantity: 2})

Object.assign(
 previousState,
 {quantity: state.quantity + 1},
 {quantity: state.quantity + 1},
 ...
)



Subsequent calls will override values from previous calls in the same cycle,
so the quantity will only be incremented once. If the next state depends on
the current state, we recommend using the updater function form, instead:

For more detail, see:

State and Lifecycle guide
In depth: When and why are setState() calls batched?
In depth: Why isn’t this.state updated immediately?

forceUpdate()

By default, when your component’s state or props change, your component
will re-render. If your render() method depends on some other data, you
can tell React that the component needs re-rendering by calling 
forceUpdate().

Calling forceUpdate() will cause render() to be called on the component,
skipping shouldComponentUpdate(). This will trigger the normal lifecycle
methods for child components, including the shouldComponentUpdate()
method of each child. React will still only update the DOM if the markup
changes.

Normally you should try to avoid all uses of forceUpdate() and only read
from this.props and this.state in render().

Class Properties

defaultProps

this.setState((state) => {
 return {quantity: state.quantity + 1};
});

component.forceUpdate(callback)

https://stackoverflow.com/a/48610973/458193
https://github.com/facebook/react/issues/11527#issuecomment-360199710


defaultProps can be defined as a property on the component class itself, to
set the default props for the class. This is used for undefined props, but not
for null props. For example:

If props.color is not provided, it will be set by default to 'blue':

If props.color is set to null, it will remain null:

displayName

The displayName string is used in debugging messages. Usually, you don’t
need to set it explicitly because it’s inferred from the name of the function
or class that defines the component. You might want to set it explicitly if
you want to display a different name for debugging purposes or when you
create a higher-order component, see Wrap the Display Name for Easy
Debugging for details.

Instance Properties

class CustomButton extends React.Component {
 // ...
}

CustomButton.defaultProps = {
 color: 'blue'
};

 render() {
   return <CustomButton /> ; // props.color will be set to blue
 }

 render() {
   return <CustomButton color={null} /> ; // props.color will r
 }



props

this.props contains the props that were defined by the caller of this
component. See Components and Props for an introduction to props.

In particular, this.props.children is a special prop, typically defined by
the child tags in the JSX expression rather than in the tag itself.

state

The state contains data specific to this component that may change over
time. The state is user-defined, and it should be a plain JavaScript object.

If some value isn’t used for rendering or data flow (for example, a timer
ID), you don’t have to put it in the state. Such values can be defined as
fields on the component instance.

See State and Lifecycle for more information about the state.

Never mutate this.state directly, as calling setState() afterwards may
replace the mutation you made. Treat this.state as if it were immutable.

ReactDOM

The react-dom package provides DOM-specific methods that can be used
at the top level of your app and as an escape hatch to get outside the React
model if you need to.

If you use ES5 with npm, you can write:

The react-dom package also provides modules specific to client and server
apps: - react-dom/client - react-dom/server

import * as ReactDOM from 'react-dom';

var ReactDOM = require('react-dom');



Overview

The react-dom package exports these methods: - createPortal() - 
flushSync()

These react-dom methods are also exported, but are considered legacy: - 
render() - hydrate() - findDOMNode() - unmountComponentAtNode()

Note:

Both render and hydrate have been replaced with new client methods
in React 18. These methods will warn that your app will behave as if
it’s running React 17 (learn more here).

Browser Support

React supports all modern browsers, although some polyfills are required
for older versions.

Note

We do not support older browsers that don’t support ES5 methods or
microtasks such as Internet Explorer. You may find that your apps do
work in older browsers if polyfills such as es5-shim and es5-sham are
included in the page, but you’re on your own if you choose to take this
path.

Reference

createPortal()

Creates a portal. Portals provide a way to render children into a DOM node
that exists outside the hierarchy of the DOM component.

flushSync()

createPortal(child, container)

https://reactjs.org/link/switch-to-createroot
https://github.com/es-shims/es5-shim


Force React to flush any updates inside the provided callback
synchronously. This ensures that the DOM is updated immediately.

Note:

flushSync can significantly hurt performance. Use sparingly.

flushSync may force pending Suspense boundaries to show their 
fallback state.

flushSync may also run pending effects and synchronously apply any
updates they contain before returning.

flushSync may also flush updates outside the callback when necessary
to flush the updates inside the callback. For example, if there are
pending updates from a click, React may flush those before flushing
the updates inside the callback.

Legacy Reference

render()

Note:

render has been replaced with createRoot in React 18. See
createRoot for more info.

Render a React element into the DOM in the supplied container and return
a reference to the component (or returns null for stateless components).

flushSync(callback)

// Force this state update to be synchronous.
flushSync(() => {
 setCount(count + 1);
});
// By this point, DOM is updated.

render(element, container[, callback])

file:///C:/docs/more-about-refs.html


If the React element was previously rendered into container, this will
perform an update on it and only mutate the DOM as necessary to reflect
the latest React element.

If the optional callback is provided, it will be executed after the component
is rendered or updated.

Note:

render() controls the contents of the container node you pass in. Any
existing DOM elements inside are replaced when first called. Later
calls use React’s DOM diffing algorithm for efficient updates.

render() does not modify the container node (only modifies the
children of the container). It may be possible to insert a component to
an existing DOM node without overwriting the existing children.

render() currently returns a reference to the root ReactComponent
instance. However, using this return value is legacy and should be
avoided because future versions of React may render components
asynchronously in some cases. If you need a reference to the root 
ReactComponent instance, the preferred solution is to attach a callback
ref to the root element.

Using render() to hydrate a server-rendered container is deprecated.
Use hydrateRoot() instead.

hydrate()

Note:

hydrate has been replaced with hydrateRoot in React 18. See
hydrateRoot for more info.

hydrate(element, container[, callback])



Same as render(), but is used to hydrate a container whose HTML
contents were rendered by ReactDOMServer. React will attempt to attach
event listeners to the existing markup.

React expects that the rendered content is identical between the server and
the client. It can patch up differences in text content, but you should treat
mismatches as bugs and fix them. In development mode, React warns about
mismatches during hydration. There are no guarantees that attribute
differences will be patched up in case of mismatches. This is important for
performance reasons because in most apps, mismatches are rare, and so
validating all markup would be prohibitively expensive.

If a single element’s attribute or text content is unavoidably different
between the server and the client (for example, a timestamp), you may
silence the warning by adding suppressHydrationWarning={true} to the
element. It only works one level deep, and is intended to be an escape
hatch. Don’t overuse it. Unless it’s text content, React still won’t attempt to
patch it up, so it may remain inconsistent until future updates.

If you intentionally need to render something different on the server and the
client, you can do a two-pass rendering. Components that render something
different on the client can read a state variable like this.state.isClient,
which you can set to true in componentDidMount(). This way the initial
render pass will render the same content as the server, avoiding mismatches,
but an additional pass will happen synchronously right after hydration. Note
that this approach will make your components slower because they have to
render twice, so use it with caution.

Remember to be mindful of user experience on slow connections. The
JavaScript code may load significantly later than the initial HTML render,
so if you render something different in the client-only pass, the transition
can be jarring. However, if executed well, it may be beneficial to render a
“shell” of the application on the server, and only show some of the extra
widgets on the client. To learn how to do this without getting the markup
mismatch issues, refer to the explanation in the previous paragraph.



unmountComponentAtNode()

Note:

unmountComponentAtNode has been replaced with root.unmount() in
React 18. See createRoot for more info.

Remove a mounted React component from the DOM and clean up its event
handlers and state. If no component was mounted in the container, calling
this function does nothing. Returns true if a component was unmounted
and false if there was no component to unmount.

findDOMNode()

Note:

findDOMNode is an escape hatch used to access the underlying DOM
node. In most cases, use of this escape hatch is discouraged because it
pierces the component abstraction. It has been deprecated in 
StrictMode.

If this component has been mounted into the DOM, this returns the
corresponding native browser DOM element. This method is useful for
reading values out of the DOM, such as form field values and performing
DOM measurements. In most cases, you can attach a ref to the DOM
node and avoid using findDOMNode at all.

When a component renders to null or false, findDOMNode returns null.
When a component renders to a string, findDOMNode returns a text DOM
node containing that value. As of React 16, a component may return a
fragment with multiple children, in which case findDOMNode will return the
DOM node corresponding to the first non-empty child.

unmountComponentAtNode(container)

findDOMNode(component)



Note:

findDOMNode only works on mounted components (that is, components
that have been placed in the DOM). If you try to call this on a
component that has not been mounted yet (like calling findDOMNode()
in render() on a component that has yet to be created) an exception
will be thrown.

findDOMNode cannot be used on function components.

ReactDOMClient

The react-dom/client package provides client-specific methods used for
initializing an app on the client. Most of your components should not need
to use this module.

If you use ES5 with npm, you can write:

Overview

The following methods can be used in client environments:

createRoot()

hydrateRoot()

Browser Support

React supports all modern browsers, although some polyfills are required
for older versions.

Note

import * as ReactDOM from 'react-dom/client';

var ReactDOM = require('react-dom/client');



We do not support older browsers that don’t support ES5 methods or
microtasks such as Internet Explorer. You may find that your apps do
work in older browsers if polyfills such as es5-shim and es5-sham are
included in the page, but you’re on your own if you choose to take this
path.

Reference

createRoot()

Create a React root for the supplied container and return the root. The root
can be used to render a React element into the DOM with render:

createRoot accepts two options: - onRecoverableError: optional callback
called when React automatically recovers from errors. - identifierPrefix:
optional prefix React uses for ids generated by React.useId. Useful to
avoid conflicts when using multiple roots on the same page. Must be the
same prefix used on the server.

The root can also be unmounted with unmount:

Note:

createRoot() controls the contents of the container node you pass in.
Any existing DOM elements inside are replaced when render is called.
Later calls use React’s DOM diffing algorithm for efficient updates.

createRoot() does not modify the container node (only modifies the
children of the container). It may be possible to insert a component to
an existing DOM node without overwriting the existing children.

createRoot(container[, options]);

const root = createRoot(container);
root.render(element);

root.unmount();

https://github.com/es-shims/es5-shim


Using createRoot() to hydrate a server-rendered container is not
supported. Use hydrateRoot() instead.

hydrateRoot()

Same as createRoot(), but is used to hydrate a container whose HTML
contents were rendered by ReactDOMServer. React will attempt to attach
event listeners to the existing markup.

hydrateRoot accepts two options: - onRecoverableError: optional
callback called when React automatically recovers from errors. - 
identifierPrefix: optional prefix React uses for ids generated by 
React.useId. Useful to avoid conflicts when using multiple roots on the
same page. Must be the same prefix used on the server.

Note

React expects that the rendered content is identical between the server
and the client. It can patch up differences in text content, but you
should treat mismatches as bugs and fix them. In development mode,
React warns about mismatches during hydration. There are no
guarantees that attribute differences will be patched up in case of
mismatches. This is important for performance reasons because in
most apps, mismatches are rare, and so validating all markup would be
prohibitively expensive.

ReactDOMServer

The ReactDOMServer object enables you to render components to static
markup. Typically, it’s used on a Node server:

hydrateRoot(container, element[, options])

// ES modules
import * as ReactDOMServer from 'react-dom/server';
// CommonJS
var ReactDOMServer = require('react-dom/server');



Overview

These methods are only available in the environments with Node.js
Streams:

renderToPipeableStream()

renderToNodeStream() (Deprecated)
renderToStaticNodeStream()

These methods are only available in the environments with Web Streams
(this includes browsers, Deno, and some modern edge runtimes):

renderToReadableStream()

The following methods can be used in the environments that don’t support
streams:

renderToString()

renderToStaticMarkup()

Reference

renderToPipeableStream()

Render a React element to its initial HTML. Returns a stream with a 
pipe(res) method to pipe the output and abort() to abort the request.
Fully supports Suspense and streaming of HTML with “delayed” content
blocks “popping in” via inline <script> tags later. Read more

If you call ReactDOM.hydrateRoot() on a node that already has this server-
rendered markup, React will preserve it and only attach event handlers,
allowing you to have a very performant first-load experience.

ReactDOMServer.renderToPipeableStream(element, options)

let didError = false;
const stream = renderToPipeableStream(
 <App />,
{

https://nodejs.dev/learn/nodejs-streams
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API
https://github.com/reactwg/react-18/discussions/37


See the full list of options.

Note:

This is a Node.js-specific API. Environments with Web Streams, like
Deno and modern edge runtimes, should use 
renderToReadableStream instead.

 {
   onShellReady() {
     // The content above all Suspense boundaries is ready.
     // If something errored before we started streaming, we se
     res.statusCode = didError ? 500 : 200;
     res.setHeader('Content-type', 'text/html');
     stream.pipe(res);
   },
   onShellError(error) {
     // Something errored before we could complete the shell so
     res.statusCode = 500;
     res.send(
       '<!doctype html><p>Loading...</p><script src="clientrend
     );
   },
   onAllReady() {
     // If you don't want streaming, use this instead of onShel
     // This will fire after the entire page content is ready.
     // You can use this for crawlers or static generation.

     // res.statusCode = didError ? 500 : 200;
     // res.setHeader('Content-type', 'text/html');
     // stream.pipe(res);
   },
   onError(err) {
     didError = true;
     console.error(err);
   },

 }
);

https://github.com/facebook/react/blob/14c2be8dac2d5482fda8a0906a31d239df8551fc/packages/react-dom/src/server/ReactDOMFizzServerNode.js#L36-L46
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API


renderToReadableStream()

Streams a React element to its initial HTML. Returns a Promise that
resolves to a Readable Stream. Fully supports Suspense and streaming of
HTML. Read more

If you call ReactDOM.hydrateRoot() on a node that already has this server-
rendered markup, React will preserve it and only attach event handlers,
allowing you to have a very performant first-load experience.

ReactDOMServer.renderToReadableStream(element, options);

let controller = new AbortController();
let didError = false;
try {
 let stream = await renderToReadableStream(
   <html>
     <body>Success</body>
   </html>,
   {
     signal: controller.signal,
     onError(error) {
       didError = true;
       console.error(error);
     }
   }
 );
 
 // This is to wait for all Suspense boundaries to be ready. Yo
 // this line if you want to buffer the entire HTML instead of 
 // You can use this for crawlers or static generation:

 // await stream.allReady;

 return new Response(stream, {
   status: didError ? 500 : 200,
   headers: {'Content-Type': 'text/html'},
 });
} catch (error) {
 return new Response(
   '<!doctype html><p>Loading...</p><script src="clientrender.j

https://developer.mozilla.org/en-US/docs/Web/API/ReadableStream
https://github.com/reactwg/react-18/discussions/127


See the full list of options.

Note:

This API depends on Web Streams. For Node.js, use 
renderToPipeableStream instead.

renderToNodeStream() (Deprecated)

Render a React element to its initial HTML. Returns a Node.js Readable
stream that outputs an HTML string. The HTML output by this stream is
exactly equal to what ReactDOMServer.renderToString would return. You
can use this method to generate HTML on the server and send the markup
down on the initial request for faster page loads and to allow search engines
to crawl your pages for SEO purposes.

If you call ReactDOM.hydrateRoot() on a node that already has this server-
rendered markup, React will preserve it and only attach event handlers,
allowing you to have a very performant first-load experience.

Note:

Server-only. This API is not available in the browser.

The stream returned from this method will return a byte stream
encoded in utf-8. If you need a stream in another encoding, take a look
at a project like iconv-lite, which provides transform streams for
transcoding text.

   {
     status: 500,
     headers: {'Content-Type': 'text/html'},
   }
 );
}

ReactDOMServer.renderToNodeStream(element)

https://github.com/facebook/react/blob/14c2be8dac2d5482fda8a0906a31d239df8551fc/packages/react-dom/src/server/ReactDOMFizzServerBrowser.js#L27-L35
https://developer.mozilla.org/en-US/docs/Web/API/Streams_API
https://nodejs.org/api/stream.html#stream_readable_streams
https://www.npmjs.com/package/iconv-lite


renderToStaticNodeStream()

Similar to renderToNodeStream, except this doesn’t create extra DOM
attributes that React uses internally, such as data-reactroot. This is useful
if you want to use React as a simple static page generator, as stripping away
the extra attributes can save some bytes.

The HTML output by this stream is exactly equal to what 
ReactDOMServer.renderToStaticMarkup would return.

If you plan to use React on the client to make the markup interactive, do not
use this method. Instead, use renderToNodeStream on the server and 
ReactDOM.hydrateRoot() on the client.

Note:

Server-only. This API is not available in the browser.

The stream returned from this method will return a byte stream
encoded in utf-8. If you need a stream in another encoding, take a look
at a project like iconv-lite, which provides transform streams for
transcoding text.

renderToString()

Render a React element to its initial HTML. React will return an HTML
string. You can use this method to generate HTML on the server and send
the markup down on the initial request for faster page loads and to allow
search engines to crawl your pages for SEO purposes.

If you call ReactDOM.hydrateRoot() on a node that already has this server-
rendered markup, React will preserve it and only attach event handlers,

ReactDOMServer.renderToStaticNodeStream(element)

ReactDOMServer.renderToString(element)

https://www.npmjs.com/package/iconv-lite


allowing you to have a very performant first-load experience.

Note

This API has limited Suspense support and does not support streaming.

On the server, it is recommended to use either 
renderToPipeableStream (for Node.js) or renderToReadableStream
(for Web Streams) instead.

renderToStaticMarkup()

Similar to renderToString, except this doesn’t create extra DOM attributes
that React uses internally, such as data-reactroot. This is useful if you
want to use React as a simple static page generator, as stripping away the
extra attributes can save some bytes.

If you plan to use React on the client to make the markup interactive, do not
use this method. Instead, use renderToString on the server and 
ReactDOM.hydrateRoot() on the client.

DOM Elements

React implements a browser-independent DOM system for performance
and cross-browser compatibility. We took the opportunity to clean up a few
rough edges in browser DOM implementations.

In React, all DOM properties and attributes (including event handlers)
should be camelCased. For example, the HTML attribute tabindex

corresponds to the attribute tabIndex in React. The exception is aria-* and
data-* attributes, which should be lowercased. For example, you can keep 
aria-label as aria-label.

Differences In Attributes

ReactDOMServer.renderToStaticMarkup(element)



There are a number of attributes that work differently between React and
HTML:

checked

The checked attribute is supported by <input> components of type 
checkbox or radio. You can use it to set whether the component is checked.
This is useful for building controlled components. defaultChecked is the
uncontrolled equivalent, which sets whether the component is checked
when it is first mounted.

className

To specify a CSS class, use the className attribute. This applies to all
regular DOM and SVG elements like <div>, <a>, and others.

If you use React with Web Components (which is uncommon), use the 
class attribute instead.

dangerouslySetInnerHTML

dangerouslySetInnerHTML is React’s replacement for using innerHTML in
the browser DOM. In general, setting HTML from code is risky because it’s
easy to inadvertently expose your users to a cross-site scripting (XSS)
attack. So, you can set HTML directly from React, but you have to type out 
dangerouslySetInnerHTML and pass an object with a __html key, to remind
yourself that it’s dangerous. For example:

htmlFor

function createMarkup() {
 return {__html: 'First &middot; Second'};
}

function MyComponent() {
 return <div dangerouslySetInnerHTML={createMarkup()} />;
}

https://en.wikipedia.org/wiki/Cross-site_scripting


Since for is a reserved word in JavaScript, React elements use htmlFor
instead.

onChange

The onChange event behaves as you would expect it to: whenever a form
field is changed, this event is fired. We intentionally do not use the existing
browser behavior because onChange is a misnomer for its behavior and
React relies on this event to handle user input in real time.

selected

If you want to mark an <option> as selected, reference the value of that
option in the value of its <select> instead. Check out “The select Tag” for
detailed instructions.

style

Note

Some examples in the documentation use style for convenience, but
using the style attribute as the primary means of styling elements
is generally not recommended. In most cases, className should be
used to reference classes defined in an external CSS stylesheet. style
is most often used in React applications to add dynamically-computed
styles at render time. See also FAQ: Styling and CSS.

The style attribute accepts a JavaScript object with camelCased properties
rather than a CSS string. This is consistent with the DOM style JavaScript
property, is more efficient, and prevents XSS security holes. For example:

const divStyle = {
 color: 'blue',
 backgroundImage: 'url(' + imgUrl + ')',
};

function HelloWorldComponent() {



Note that styles are not autoprefixed. To support older browsers, you need
to supply corresponding style properties:

Style keys are camelCased in order to be consistent with accessing the
properties on DOM nodes from JS (e.g. node.style.backgroundImage).
Vendor prefixes other than ms should begin with a capital letter. This is why
WebkitTransition has an uppercase “W”.

React will automatically append a “px” suffix to certain numeric inline style
properties. If you want to use units other than “px”, specify the value as a
string with the desired unit. For example:

Not all style properties are converted to pixel strings though. Certain ones
remain unitless (eg zoom, order, flex). A complete list of unitless
properties can be seen here.

suppressContentEditableWarning

 return <div style={divStyle}>Hello World!</div>;
}

const divStyle = {
 WebkitTransition: 'all', // note the capital 'W' here
 msTransition: 'all' // 'ms' is the only lowercase vendor prefi
};

function ComponentWithTransition() {

 return <div style={divStyle}>This should work cross-browser</d
}

// Result style: '10px'
<div style={{ height: 10 }}>
 Hello World!
</div>

// Result style: '10%'
<div style={{ height: '10%' }}>
 Hello World!
</div>

https://www.andismith.com/blogs/2012/02/modernizr-prefixed/
https://github.com/facebook/react/blob/4131af3e4bf52f3a003537ec95a1655147c81270/src/renderers/dom/shared/CSSProperty.js#L15-L59


Normally, there is a warning when an element with children is also marked
as contentEditable, because it won’t work. This attribute suppresses that
warning. Don’t use this unless you are building a library like Draft.js that
manages contentEditable manually.

suppressHydrationWarning

If you use server-side React rendering, normally there is a warning when
the server and the client render different content. However, in some rare
cases, it is very hard or impossible to guarantee an exact match. For
example, timestamps are expected to differ on the server and on the client.

If you set suppressHydrationWarning to true, React will not warn you
about mismatches in the attributes and the content of that element. It only
works one level deep, and is intended to be used as an escape hatch. Don’t
overuse it. You can read more about hydration in the 
ReactDOM.hydrateRoot() documentation.

value

The value attribute is supported by <input>, <select> and <textarea>
components. You can use it to set the value of the component. This is useful
for building controlled components. defaultValue is the uncontrolled
equivalent, which sets the value of the component when it is first mounted.

All Supported HTML Attributes

As of React 16, any standard or custom DOM attributes are fully supported.

React has always provided a JavaScript-centric API to the DOM. Since
React components often take both custom and DOM-related props, React
uses the camelCase convention just like the DOM APIs:

<div tabIndex={-1} />      // Just like node.tabIndex DOM API
<div className="Button" /> // Just like node.className DOM API
<input readOnly={true} />  // Just like node.readOnly DOM API

https://facebook.github.io/draft-js/
file:///C:/blog/2017/09/08/dom-attributes-in-react-16.html


These props work similarly to the corresponding HTML attributes, with the
exception of the special cases documented above.

Some of the DOM attributes supported by React include:

accept acceptCharset accessKey action allowFullScreen alt async 
autoComplete 
autoFocus autoPlay capture cellPadding cellSpacing challenge 
charSet checked 
cite classID className colSpan cols content contentEditable 
contextMenu controls 
controlsList coords crossOrigin data dateTime default defer dir 
disabled 
download draggable encType form formAction formEncType 
formMethod formNoValidate 
formTarget frameBorder headers height hidden high href hrefLang 
htmlFor 
httpEquiv icon id inputMode integrity is keyParams keyType kind 
label lang list 
loop low manifest marginHeight marginWidth max maxLength media 
mediaGroup method 
min minLength multiple muted name noValidate nonce open optimum 
pattern 
placeholder poster preload profile radioGroup readOnly rel 
required reversed 
role rowSpan rows sandbox scope scoped scrolling seamless 
selected shape size 
sizes span spellCheck src srcDoc srcLang srcSet start step 
style summary 
tabIndex target title type useMap value width wmode wrap

Similarly, all SVG attributes are fully supported:

accentHeight accumulate additive alignmentBaseline allowReorder 
alphabetic 
amplitude arabicForm ascent attributeName attributeType 
autoReverse azimuth 
baseFrequency baseProfile baselineShift bbox begin bias by 
calcMode capHeight 
clip clipPath clipPathUnits clipRule colorInterpolation 
colorInterpolationFilters colorProfile colorRendering 
contentScriptType 
contentStyleType cursor cx cy d decelerate descent 
diffuseConstant direction 
display divisor dominantBaseline dur dx dy edgeMode elevation 
enableBackground 



end exponent externalResourcesRequired fill fillOpacity 
fillRule filter 
filterRes filterUnits floodColor floodOpacity focusable 
fontFamily fontSize 
fontSizeAdjust fontStretch fontStyle fontVariant fontWeight 
format from fx fy 
g1 g2 glyphName glyphOrientationHorizontal 
glyphOrientationVertical glyphRef 
gradientTransform gradientUnits hanging horizAdvX horizOriginX 
ideographic 
imageRendering in in2 intercept k k1 k2 k3 k4 kernelMatrix 
kernelUnitLength 
kerning keyPoints keySplines keyTimes lengthAdjust 
letterSpacing lightingColor 
limitingConeAngle local markerEnd markerHeight markerMid 
markerStart 
markerUnits markerWidth mask maskContentUnits maskUnits 
mathematical mode 
numOctaves offset opacity operator order orient orientation 
origin overflow 
overlinePosition overlineThickness paintOrder panose1 
pathLength 
patternContentUnits patternTransform patternUnits pointerEvents 
points 
pointsAtX pointsAtY pointsAtZ preserveAlpha preserveAspectRatio 
primitiveUnits 
r radius refX refY renderingIntent repeatCount repeatDur 
requiredExtensions 
requiredFeatures restart result rotate rx ry scale seed 
shapeRendering slope 
spacing specularConstant specularExponent speed spreadMethod 
startOffset 
stdDeviation stemh stemv stitchTiles stopColor stopOpacity 
strikethroughPosition strikethroughThickness string stroke 
strokeDasharray 
strokeDashoffset strokeLinecap strokeLinejoin strokeMiterlimit 
strokeOpacity 
strokeWidth surfaceScale systemLanguage tableValues targetX 
targetY textAnchor 
textDecoration textLength textRendering to transform u1 u2 
underlinePosition 
underlineThickness unicode unicodeBidi unicodeRange unitsPerEm 
vAlphabetic 
vHanging vIdeographic vMathematical values vectorEffect version 
vertAdvY 
vertOriginX vertOriginY viewBox viewTarget visibility widths 
wordSpacing 
writingMode x x1 x2 xChannelSelector xHeight xlinkActuate 



xlinkArcrole 
xlinkHref xlinkRole xlinkShow xlinkTitle xlinkType xmlns 
xmlnsXlink xmlBase 
xmlLang xmlSpace y y1 y2 yChannelSelector z zoomAndPan

You may also use custom attributes as long as they’re fully lowercase.

SyntheticEvent

This reference guide documents the SyntheticEvent wrapper that forms
part of React’s Event System. See the Handling Events guide to learn more.

Overview

Your event handlers will be passed instances of SyntheticEvent, a cross-
browser wrapper around the browser’s native event. It has the same
interface as the browser’s native event, including stopPropagation() and 
preventDefault(), except the events work identically across all browsers.

If you find that you need the underlying browser event for some reason,
simply use the nativeEvent attribute to get it. The synthetic events are
different from, and do not map directly to, the browser’s native events. For
example in onMouseLeave event.nativeEvent will point to a mouseout
event. The specific mapping is not part of the public API and may change at
any time. Every SyntheticEvent object has the following attributes:

boolean bubbles
boolean cancelable
DOMEventTarget currentTarget
boolean defaultPrevented
number eventPhase
boolean isTrusted
DOMEvent nativeEvent
void preventDefault()
boolean isDefaultPrevented()
void stopPropagation()
boolean isPropagationStopped()
void persist()
DOMEventTarget target



Note:

As of v17, e.persist() doesn’t do anything because the 
SyntheticEvent is no longer pooled.

Note:

As of v0.14, returning false from an event handler will no longer stop
event propagation. Instead, e.stopPropagation() or 
e.preventDefault() should be triggered manually, as appropriate.

Supported Events

React normalizes events so that they have consistent properties across
different browsers.

The event handlers below are triggered by an event in the bubbling phase.
To register an event handler for the capture phase, append Capture to the
event name; for example, instead of using onClick, you would use 
onClickCapture to handle the click event in the capture phase.

Clipboard Events
Composition Events
Keyboard Events
Focus Events
Form Events
Generic Events
Mouse Events
Pointer Events
Selection Events
Touch Events
UI Events
Wheel Events
Media Events
Image Events

number timeStamp
string type

file:///C:/docs/legacy-event-pooling.html


Animation Events
Transition Events
Other Events

Reference

Clipboard Events

Event names:

onCopy onCut onPaste

Properties:

Composition Events

Event names:

onCompositionEnd onCompositionStart onCompositionUpdate

Properties:

Keyboard Events

Event names:

onKeyDown onKeyPress onKeyUp

Properties:

DOMDataTransfer clipboardData

string data



The key property can take any of the values documented in the DOM Level
3 Events spec.

Focus Events

Event names:

onFocus onBlur

These focus events work on all elements in the React DOM, not just form
elements.

Properties:

onFocus

The onFocus event is called when the element (or some element inside of it)
receives focus. For example, it’s called when the user clicks on a text input.

boolean altKey
number charCode
boolean ctrlKey
boolean getModifierState(key)
string key
number keyCode
string locale
number location
boolean metaKey
boolean repeat
boolean shiftKey
number which

DOMEventTarget relatedTarget

function Example() {
 return (
   <input
     onFocus={(e) => {
       console.log('Focused on input');

https://www.w3.org/TR/uievents-key/#named-key-attribute-values


onBlur

The onBlur event handler is called when focus has left the element (or left
some element inside of it). For example, it’s called when the user clicks
outside of a focused text input.

Detecting Focus Entering and Leaving

You can use the currentTarget and relatedTarget to differentiate if the
focusing or blurring events originated from outside of the parent element.
Here is a demo you can copy and paste that shows how to detect focusing a
child, focusing the element itself, and focus entering or leaving the whole
subtree.

     }}
     placeholder="onFocus is triggered when you click this inpu
   />
 )
}

function Example() {
 return (
   <input
     onBlur={(e) => {
       console.log('Triggered because this input lost focus');
     }}
     placeholder="onBlur is triggered when you click this input
   />
 )
}

function Example() {
 return (
   <div
     tabIndex={1}
     onFocus={(e) => {
       if (e.currentTarget === e.target) {
         console.log('focused self');
       } else {



Form Events

Event names:

onChange onInput onInvalid onReset onSubmit 

For more information about the onChange event, see Forms.

Generic Events

Event names:

onError onLoad

         console.log('focused child', e.target);
       }
       if (!e.currentTarget.contains(e.relatedTarget)) {
         // Not triggered when swapping focus between children
         console.log('focus entered self');
       }
     }}
     onBlur={(e) => {
       if (e.currentTarget === e.target) {
         console.log('unfocused self');
       } else {
         console.log('unfocused child', e.target);
       }
       if (!e.currentTarget.contains(e.relatedTarget)) {
         // Not triggered when swapping focus between children
         console.log('focus left self');
       }
     }}
   >
     <input id="1" />
     <input id="2" />
   </div>
 );
}



Mouse Events

Event names:

onClick onContextMenu onDoubleClick onDrag onDragEnd 
onDragEnter onDragExit 
onDragLeave onDragOver onDragStart onDrop onMouseDown 
onMouseEnter onMouseLeave 
onMouseMove onMouseOut onMouseOver onMouseUp

The onMouseEnter and onMouseLeave events propagate from the element
being left to the one being entered instead of ordinary bubbling and do not
have a capture phase.

Properties:

Pointer Events

Event names:

onPointerDown onPointerMove onPointerUp onPointerCancel 
onGotPointerCapture 
onLostPointerCapture onPointerEnter onPointerLeave 
onPointerOver onPointerOut

boolean altKey
number button
number buttons
number clientX
number clientY
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
number pageX
number pageY
DOMEventTarget relatedTarget
number screenX
number screenY
boolean shiftKey



The onPointerEnter and onPointerLeave events propagate from the
element being left to the one being entered instead of ordinary bubbling and
do not have a capture phase.

Properties:

As defined in the W3 spec, pointer events extend Mouse Events with the
following properties:

A note on cross-browser support:

Pointer events are not yet supported in every browser (at the time of writing
this article, supported browsers include: Chrome, Firefox, Edge, and
Internet Explorer). React deliberately does not polyfill support for other
browsers because a standard-conform polyfill would significantly increase
the bundle size of react-dom.

If your application requires pointer events, we recommend adding a third
party pointer event polyfill.

Selection Events

Event names:

onSelect

number pointerId
number width
number height
number pressure
number tangentialPressure
number tiltX
number tiltY
number twist
string pointerType
boolean isPrimary

https://www.w3.org/TR/pointerevents/


Touch Events

Event names:

onTouchCancel onTouchEnd onTouchMove onTouchStart

Properties:

UI Events

Event names:

onScroll

Note

Starting with React 17, the onScroll event does not bubble in React.
This matches the browser behavior and prevents the confusion when a
nested scrollable element fires events on a distant parent.

Properties:

Wheel Events

Event names:

boolean altKey
DOMTouchList changedTouches
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
boolean shiftKey
DOMTouchList targetTouches
DOMTouchList touches

number detail
DOMAbstractView view



onWheel

Properties:

Media Events

Event names:

onAbort onCanPlay onCanPlayThrough onDurationChange onEmptied 
onEncrypted 
onEnded onError onLoadedData onLoadedMetadata onLoadStart 
onPause onPlay 
onPlaying onProgress onRateChange onSeeked onSeeking onStalled 
onSuspend 
onTimeUpdate onVolumeChange onWaiting

Image Events

Event names:

onLoad onError

Animation Events

Event names:

onAnimationStart onAnimationEnd onAnimationIteration

Properties:

number deltaMode
number deltaX
number deltaY
number deltaZ

string animationName
string pseudoElement



Transition Events

Event names:

onTransitionEnd

Properties:

Other Events

Event names:

onToggle

Test Utilities

Importing

Overview

ReactTestUtils makes it easy to test React components in the testing
framework of your choice. At Facebook we use Jest for painless JavaScript
testing. Learn how to get started with Jest through the Jest website’s React
Tutorial.

Note:

float elapsedTime

string propertyName
string pseudoElement
float elapsedTime

import ReactTestUtils from 'react-dom/test-utils'; // ES6
var ReactTestUtils = require('react-dom/test-utils'); // ES5 wit

https://facebook.github.io/jest/
https://jestjs.io/docs/tutorial-react


We recommend using React Testing Library which is designed to
enable and encourage writing tests that use your components as the
end users do.

For React versions <= 16, the Enzyme library makes it easy to assert,
manipulate, and traverse your React Components’ output.

act()

mockComponent()

isElement()

isElementOfType()

isDOMComponent()

isCompositeComponent()

isCompositeComponentWithType()

findAllInRenderedTree()

scryRenderedDOMComponentsWithClass()

findRenderedDOMComponentWithClass()

scryRenderedDOMComponentsWithTag()

findRenderedDOMComponentWithTag()

scryRenderedComponentsWithType()

findRenderedComponentWithType()

renderIntoDocument()

Simulate

Reference

act()

To prepare a component for assertions, wrap the code rendering it and
performing updates inside an act() call. This makes your test run closer to
how React works in the browser.

Note

If you use react-test-renderer, it also provides an act export that
behaves the same way.

https://testing-library.com/react
https://airbnb.io/enzyme/


For example, let’s say we have this Counter component:

Here is how we can test it:

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
import { act } from 'react-dom/test-utils'; 
import Counter from './Counter'; 
 
let container; 
 
beforeEach(() => { 
  container = document.createElement('div'); 
  document.body.appendChild(container); 
}); 

class Counter extends React.Component {
 constructor(props) {
   super(props);
   this.state = {count: 0};
   this.handleClick = this.handleClick.bind(this);
 }
 componentDidMount() {
   document.title = `You clicked ${this.state.count} times`;
 }
 componentDidUpdate() {
   document.title = `You clicked ${this.state.count} times`;
 }
 handleClick() {
   this.setState(state => ({
     count: state.count + 1,
   }));
 }
 render() {
   return (
     <div>
       <p>You clicked {this.state.count} times</p>
       <button onClick={this.handleClick}>
         Click me
       </button>
     </div>
   );
 }
}



 
afterEach(() => { 
  document.body.removeChild(container); 
  container = null; 
}); 
 
it('can render and update a counter', () => { 
  // Test first render and componentDidMount 
  act(() => { 
    ReactDOM.createRoot(container).render(<Counter />); 
  }); 
  const button = container.querySelector('button'); 
  const label = container.querySelector('p'); 
  expect(label.textContent).toBe('You clicked 0 times'); 
  expect(document.title).toBe('You clicked 0 times'); 
 
  // Test second render and componentDidUpdate 
  act(() => { 
    button.dispatchEvent(new MouseEvent('click', {bubbles: 
true})); 
  }); 
  expect(label.textContent).toBe('You clicked 1 times'); 
  expect(document.title).toBe('You clicked 1 times'); 
});

Don’t forget that dispatching DOM events only works when the DOM
container is added to the document. You can use a library like React
Testing Library to reduce the boilerplate code.

The recipes document contains more details on how act() behaves,
with examples and usage.

mockComponent()

Pass a mocked component module to this method to augment it with useful
methods that allow it to be used as a dummy React component. Instead of

mockComponent(
 componentClass,
 [mockTagName]
)

https://testing-library.com/react


rendering as usual, the component will become a simple <div> (or other tag
if mockTagName is provided) containing any provided children.

Note:

mockComponent() is a legacy API. We recommend using jest.mock()
instead.

isElement()

Returns true if element is any React element.

isElementOfType()

Returns true if element is a React element whose type is of a React 
componentClass.

isDOMComponent()

Returns true if instance is a DOM component (such as a <div> or 
<span>).

isCompositeComponent()

isElement(element)

isElementOfType(
 element,
 componentClass
)

isDOMComponent(instance)

https://jestjs.io/docs/tutorial-react-native#mock-native-modules-using-jestmock


Returns true if instance is a user-defined component, such as a class or a
function.

isCompositeComponentWithType()

Returns true if instance is a component whose type is of a React 
componentClass.

findAllInRenderedTree()

Traverse all components in tree and accumulate all components where 
test(component) is true. This is not that useful on its own, but it’s used as
a primitive for other test utils.

scryRenderedDOMComponentsWithClass()

Finds all DOM elements of components in the rendered tree that are DOM
components with the class name matching className.

isCompositeComponent(instance)

isCompositeComponentWithType(
 instance,
 componentClass
)

findAllInRenderedTree(
 tree,
 test
)

scryRenderedDOMComponentsWithClass(
 tree,
 className
)



findRenderedDOMComponentWithClass()

Like scryRenderedDOMComponentsWithClass() but expects there to be one
result, and returns that one result, or throws exception if there is any other
number of matches besides one.

scryRenderedDOMComponentsWithTag()

Finds all DOM elements of components in the rendered tree that are DOM
components with the tag name matching tagName.

findRenderedDOMComponentWithTag()

Like scryRenderedDOMComponentsWithTag() but expects there to be one
result, and returns that one result, or throws exception if there is any other
number of matches besides one.

scryRenderedComponentsWithType()

findRenderedDOMComponentWithClass(
 tree,
 className
)

scryRenderedDOMComponentsWithTag(
 tree,
 tagName
)

findRenderedDOMComponentWithTag(
 tree,
 tagName
)



Finds all instances of components with type equal to componentClass.

findRenderedComponentWithType()

Same as scryRenderedComponentsWithType() but expects there to be one
result and returns that one result, or throws exception if there is any other
number of matches besides one.

renderIntoDocument()

Render a React element into a detached DOM node in the document. This
function requires a DOM. It is effectively equivalent to:

Note:

You will need to have window, window.document and 
window.document.createElement globally available before you
import React. Otherwise React will think it can’t access the DOM and
methods like setState won’t work.

scryRenderedComponentsWithType(
 tree,
 componentClass
)

findRenderedComponentWithType(
 tree,
 componentClass
)

renderIntoDocument(element)

const domContainer = document.createElement('div');
ReactDOM.createRoot(domContainer).render(element);



Other Utilities

Simulate

Simulate an event dispatch on a DOM node with optional eventData event
data.

Simulate has a method for every event that React understands.

Clicking an element

Changing the value of an input field and then pressing ENTER.

Note

You will have to provide any event property that you’re using in your
component (e.g. keyCode, which, etc…) as React is not creating any of
these for you.

Test Renderer

Importing

Simulate.{eventName}(
 element,
 [eventData]
)

// <button ref={(node) => this.button = node}>...</button>
const node = this.button;
ReactTestUtils.Simulate.click(node);

// <input ref={(node) => this.textInput = node} />
const node = this.textInput;
node.value = 'giraffe';
ReactTestUtils.Simulate.change(node);
ReactTestUtils.Simulate.keyDown(node, {key: "Enter", keyCode: 13



Overview

This package provides a React renderer that can be used to render React
components to pure JavaScript objects, without depending on the DOM or a
native mobile environment.

Essentially, this package makes it easy to grab a snapshot of the platform
view hierarchy (similar to a DOM tree) rendered by a React DOM or React
Native component without using a browser or jsdom.

Example:

You can use Jest’s snapshot testing feature to automatically save a copy of
the JSON tree to a file and check in your tests that it hasn’t changed: Learn
more about it.

You can also traverse the output to find specific nodes and make assertions
about them.

import TestRenderer from 'react-test-renderer'; // ES6
const TestRenderer = require('react-test-renderer'); // ES5 with

import TestRenderer from 'react-test-renderer';

function Link(props) {
 return <a href={props.page}>{props.children}</a>;
}

const testRenderer = TestRenderer.create(
 <Link page="https://www.facebook.com/">Facebook</Link>
);

console.log(testRenderer.toJSON());
// { type: 'a',
//   props: { href: 'https://www.facebook.com/' },
//   children: [ 'Facebook' ] }

import TestRenderer from 'react-test-renderer';

https://github.com/tmpvar/jsdom
https://jestjs.io/docs/en/snapshot-testing


TestRenderer

TestRenderer.create()

TestRenderer.act()

TestRenderer instance

testRenderer.toJSON()

testRenderer.toTree()

testRenderer.update()

testRenderer.unmount()

testRenderer.getInstance()

testRenderer.root

TestInstance

function MyComponent() {
 return (
   <div>
     <SubComponent foo="bar" />
     <p className="my">Hello</p>
   </div>

 )
}

function SubComponent() {
 return (
   <p className="sub">Sub</p>
 );
}

const testRenderer = TestRenderer.create(<MyComponent />);
const testInstance = testRenderer.root;

expect(testInstance.findByType(SubComponent).props.foo).toBe('ba
expect(testInstance.findByProps({className: "sub"}).children).to



testInstance.find()

testInstance.findByType()

testInstance.findByProps()

testInstance.findAll()

testInstance.findAllByType()

testInstance.findAllByProps()

testInstance.instance

testInstance.type

testInstance.props

testInstance.parent

testInstance.children

Reference

TestRenderer.create()

Create a TestRenderer instance with the passed React element. It doesn’t
use the real DOM, but it still fully renders the component tree into memory
so you can make assertions about it. Returns a TestRenderer instance.

TestRenderer.act()

Similar to the act() helper from react-dom/test-utils, 
TestRenderer.act prepares a component for assertions. Use this version of
act() to wrap calls to TestRenderer.create and testRenderer.update.

TestRenderer.create(element, options);

TestRenderer.act(callback);

import {create, act} from 'react-test-renderer';
import App from './app.js'; // The component being tested

// render the component
let root; 
act(() => {
 root = create(<App value={1}/>)
});



testRenderer.toJSON()

Return an object representing the rendered tree. This tree only contains the
platform-specific nodes like <div> or <View> and their props, but doesn’t
contain any user-written components. This is handy for snapshot testing.

testRenderer.toTree()

Return an object representing the rendered tree. The representation is more
detailed than the one provided by toJSON(), and includes the user-written
components. You probably don’t need this method unless you’re writing
your own assertion library on top of the test renderer.

testRenderer.update()

Re-render the in-memory tree with a new root element. This simulates a
React update at the root. If the new element has the same type and key as
the previous element, the tree will be updated; otherwise, it will re-mount a
new tree.

// make assertions on root 
expect(root.toJSON()).toMatchSnapshot();

// update with some different props
act(() => {
 root.update(<App value={2}/>);
})

// make assertions on root 
expect(root.toJSON()).toMatchSnapshot();

testRenderer.toJSON()

testRenderer.toTree()

testRenderer.update(element)

https://facebook.github.io/jest/docs/en/snapshot-testing.html#snapshot-testing-with-jest


testRenderer.unmount()

Unmount the in-memory tree, triggering the appropriate lifecycle events.

testRenderer.getInstance()

Return the instance corresponding to the root element, if available. This will
not work if the root element is a function component because they don’t
have instances.

testRenderer.root

Returns the root “test instance” object that is useful for making assertions
about specific nodes in the tree. You can use it to find other “test instances”
deeper below.

testInstance.find()

Find a single descendant test instance for which test(testInstance)
returns true. If test(testInstance) does not return true for exactly one
test instance, it will throw an error.

testInstance.findByType()

Find a single descendant test instance with the provided type. If there is not
exactly one test instance with the provided type, it will throw an error.

testRenderer.unmount()

testRenderer.getInstance()

testRenderer.root

testInstance.find(test)

testInstance.findByType(type)



testInstance.findByProps()

Find a single descendant test instance with the provided props. If there is
not exactly one test instance with the provided props, it will throw an error.

testInstance.findAll()

Find all descendant test instances for which test(testInstance) returns 
true.

testInstance.findAllByType()

Find all descendant test instances with the provided type.

testInstance.findAllByProps()

Find all descendant test instances with the provided props.

testInstance.instance

The component instance corresponding to this test instance. It is only
available for class components, as function components don’t have
instances. It matches the this value inside the given component.

testInstance.type

testInstance.findByProps(props)

testInstance.findAll(test)

testInstance.findAllByType(type)

testInstance.findAllByProps(props)

testInstance.instance

testInstance.type



The component type corresponding to this test instance. For example, a 
<Button /> component has a type of Button.

testInstance.props

The props corresponding to this test instance. For example, a <Button 
size="small" /> component has {size: 'small'} as props.

testInstance.parent

The parent test instance of this test instance.

testInstance.children

The children test instances of this test instance.

Ideas

You can pass createNodeMock function to TestRenderer.create as the
option, which allows for custom mock refs. createNodeMock accepts the
current element and should return a mock ref object. This is useful when
you test a component that relies on refs.

testInstance.props

testInstance.parent

testInstance.children

import TestRenderer from 'react-test-renderer';

class MyComponent extends React.Component {
 constructor(props) {
   super(props);
   this.input = null;
 }
 componentDidMount() {
   this.input.focus();



JavaScript Environment Requirements

React 18 supports all modern browsers (Edge, Firefox, Chrome, Safari, etc).

If you support older browsers and devices such as Internet Explorer which
do not provide modern browser features natively or have non-compliant
implementations, consider including a global polyfill in your bundled
application.

Here is a list of the modern features React 18 uses: - Promise - Symbol - 
Object.assign

The correct polyfill for these features depend on your environment. For
many users, you can configure your Browserlist settings. For others, you
may need to import polyfills like core-js directly.

 }
 render() {
   return <input type="text" ref={el => this.input = el} />
 }
}

let focused = false;
TestRenderer.create(
 <MyComponent />,
 {
   createNodeMock: (element) => {
     if (element.type === 'input') {
       // mock a focus function
       return {
         focus: () => {
           focused = true;
         }
       };
     }
     return null;
   }
 }
);
expect(focused).toBe(true);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://github.com/browserslist/browserslist
https://github.com/zloirock/core-js


Glossary of React Terms

Single-page Application

A single-page application is an application that loads a single HTML page
and all the necessary assets (such as JavaScript and CSS) required for the
application to run. Any interactions with the page or subsequent pages do
not require a round trip to the server which means the page is not reloaded.

Though you may build a single-page application in React, it is not a
requirement. React can also be used for enhancing small parts of existing
websites with additional interactivity. Code written in React can coexist
peacefully with markup rendered on the server by something like PHP, or
with other client-side libraries. In fact, this is exactly how React is being
used at Facebook.

ES6, ES2015, ES2016, etc

These acronyms all refer to the most recent versions of the ECMAScript
Language Specification standard, which the JavaScript language is an
implementation of. The ES6 version (also known as ES2015) includes
many additions to the previous versions such as: arrow functions, classes,
template literals, let and const statements. You can learn more about
specific versions here.

Compilers

A JavaScript compiler takes JavaScript code, transforms it and returns
JavaScript code in a different format. The most common use case is to take
ES6 syntax and transform it into syntax that older browsers are capable of
interpreting. Babel is the compiler most commonly used with React.

Bundlers

Bundlers take JavaScript and CSS code written as separate modules (often
hundreds of them), and combine them together into a few files better

https://en.wikipedia.org/wiki/ECMAScript#Versions
https://babeljs.io/


optimized for the browsers. Some bundlers commonly used in React
applications include Webpack and Browserify.

Package Managers

Package managers are tools that allow you to manage dependencies in your
project. npm and Yarn are two package managers commonly used in React
applications. Both of them are clients for the same npm package registry.

CDN

CDN stands for Content Delivery Network. CDNs deliver cached, static
content from a network of servers across the globe.

JSX

JSX is a syntax extension to JavaScript. It is similar to a template language,
but it has full power of JavaScript. JSX gets compiled to 
React.createElement() calls which return plain JavaScript objects called
“React elements”. To get a basic introduction to JSX see the docs here and
find a more in-depth tutorial on JSX here.

React DOM uses camelCase property naming convention instead of HTML
attribute names. For example, tabindex becomes tabIndex in JSX. The
attribute class is also written as className since class is a reserved word
in JavaScript:

Elements

React elements are the building blocks of React applications. One might
confuse elements with a more widely known concept of “components”. An
element describes what you want to see on the screen. React elements are
immutable.

<h1 className="hello">My name is Clementine!</h1>

const element = <h1>Hello, world</h1>;

https://webpack.js.org/
http://browserify.org/
https://www.npmjs.com/
https://yarnpkg.com/


Typically, elements are not used directly, but get returned from components.

Components

React components are small, reusable pieces of code that return a React
element to be rendered to the page. The simplest version of React
component is a plain JavaScript function that returns a React element:

Components can also be ES6 classes:

Components can be broken down into distinct pieces of functionality and
used within other components. Components can return other components,
arrays, strings and numbers. A good rule of thumb is that if a part of your
UI is used several times (Button, Panel, Avatar), or is complex enough on
its own (App, FeedStory, Comment), it is a good candidate to be a reusable
component. Component names should also always start with a capital letter
(<Wrapper/> not <wrapper/>). See this documentation for more
information on rendering components.

props

props are inputs to a React component. They are data passed down from a
parent component to a child component.

Remember that props are readonly. They should not be modified in any
way:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

class Welcome extends React.Component {
 render() {
   return <h1>Hello, {this.props.name}</h1>;
 }
}

// Wrong!
props.number = 42;



If you need to modify some value in response to user input or a network
response, use state instead.

props.children

props.children is available on every component. It contains the content
between the opening and closing tags of a component. For example:

The string Hello world! is available in props.children in the Welcome
component:

For components defined as classes, use this.props.children:

state

A component needs state when some data associated with it changes over
time. For example, a Checkbox component might need isChecked in its
state, and a NewsFeed component might want to keep track of 
fetchedPosts in its state.

The most important difference between state and props is that props are
passed from a parent component, but state is managed by the component
itself. A component cannot change its props, but it can change its state.

For each particular piece of changing data, there should be just one
component that “owns” it in its state. Don’t try to synchronize states of two

<Welcome>Hello world!</Welcome>

function Welcome(props) {
 return <p>{props.children}</p>;
}

class Welcome extends React.Component {
 render() {
   return <p>{this.props.children}</p>;
 }
}



different components. Instead, lift it up to their closest shared ancestor, and
pass it down as props to both of them.

Lifecycle Methods

Lifecycle methods are custom functionality that gets executed during the
different phases of a component. There are methods available when the
component gets created and inserted into the DOM (mounting), when the
component updates, and when the component gets unmounted or removed
from the DOM.

### Controlled vs. Uncontrolled Components

React has two different approaches to dealing with form inputs.

An input form element whose value is controlled by React is called a
controlled component. When a user enters data into a controlled component
a change event handler is triggered and your code decides whether the input
is valid (by re-rendering with the updated value). If you do not re-render
then the form element will remain unchanged.

An uncontrolled component works like form elements do outside of React.
When a user inputs data into a form field (an input box, dropdown, etc) the
updated information is reflected without React needing to do anything.
However, this also means that you can’t force the field to have a certain
value.

In most cases you should use controlled components.

Keys

A “key” is a special string attribute you need to include when creating
arrays of elements. Keys help React identify which items have changed, are
added, or are removed. Keys should be given to the elements inside an array
to give the elements a stable identity.

Keys only need to be unique among sibling elements in the same array.
They don’t need to be unique across the whole application or even a single



component.

Don’t pass something like Math.random() to keys. It is important that keys
have a “stable identity” across re-renders so that React can determine when
items are added, removed, or re-ordered. Ideally, keys should correspond to
unique and stable identifiers coming from your data, such as post.id.

Refs

React supports a special attribute that you can attach to any component. The
ref attribute can be an object created by React.createRef() function or a
callback function, or a string (in legacy API). When the ref attribute is a
callback function, the function receives the underlying DOM element or
class instance (depending on the type of element) as its argument. This
allows you to have direct access to the DOM element or component
instance.

Use refs sparingly. If you find yourself often using refs to “make things
happen” in your app, consider getting more familiar with top-down data
flow.

Events

Handling events with React elements has some syntactic differences:

React event handlers are named using camelCase, rather than
lowercase.
With JSX you pass a function as the event handler, rather than a string.

Reconciliation

When a component’s props or state change, React decides whether an actual
DOM update is necessary by comparing the newly returned element with
the previously rendered one. When they are not equal, React will update the
DOM. This process is called “reconciliation”.



Hooks
Introducing Hooks

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

import React, { useState } from 'react'; 
 
function Example() { 
  // Declare a new state variable, which we'll call "count" 
  const [count, setCount] = useState(0); 
 
  return ( 
    <div> 
      <p>You clicked {count} times</p> 
      <button onClick={() => setCount(count + 1)}> 
        Click me 
      </button> 
    </div> 
  ); 
}

This new function useState is the first “Hook” we’ll learn about, but this
example is just a teaser. Don’t worry if it doesn’t make sense yet!

You can start learning Hooks on the next page. On this page, we’ll continue
by explaining why we’re adding Hooks to React and how they can help you
write great applications.

Note

React 16.8.0 is the first release to support Hooks. When upgrading, don’t
forget to update all packages, including React DOM. React Native has
supported Hooks since the 0.59 release of React Native.

Video Introduction

At React Conf 2018, Sophie Alpert and Dan Abramov introduced Hooks,
followed by Ryan Florence demonstrating how to refactor an application to use

https://reactnative.dev/blog/2019/03/12/releasing-react-native-059


them. Watch the video here:

No Breaking Changes

Before we continue, note that Hooks are:

Completely opt-in. You can try Hooks in a few components without
rewriting any existing code. But you don’t have to learn or use Hooks right
now if you don’t want to.
100% backwards-compatible. Hooks don’t contain any breaking changes.
Available now. Hooks are now available with the release of v16.8.0.

There are no plans to remove classes from React. You can read more about
the gradual adoption strategy for Hooks in the bottom section of this page.

Hooks don’t replace your knowledge of React concepts. Instead, Hooks
provide a more direct API to the React concepts you already know: props, state,
context, refs, and lifecycle. As we will show later, Hooks also offer a new
powerful way to combine them.



If you just want to start learning Hooks, feel free to jump directly to the
next page! You can also keep reading this page to learn more about why we’re
adding Hooks, and how we’re going to start using them without rewriting our
applications.

Motivation

Hooks solve a wide variety of seemingly unconnected problems in React that
we’ve encountered over five years of writing and maintaining tens of thousands
of components. Whether you’re learning React, use it daily, or even prefer a
different library with a similar component model, you might recognize some of
these problems.

It’s hard to reuse stateful logic between components

React doesn’t offer a way to “attach” reusable behavior to a component (for
example, connecting it to a store). If you’ve worked with React for a while, you
may be familiar with patterns like render props and higher-order components
that try to solve this. But these patterns require you to restructure your
components when you use them, which can be cumbersome and make code
harder to follow. If you look at a typical React application in React DevTools,
you will likely find a “wrapper hell” of components surrounded by layers of
providers, consumers, higher-order components, render props, and other
abstractions. While we could filter them out in DevTools, this points to a deeper
underlying problem: React needs a better primitive for sharing stateful logic.

With Hooks, you can extract stateful logic from a component so it can be tested
independently and reused. Hooks allow you to reuse stateful logic without
changing your component hierarchy. This makes it easy to share Hooks
among many components or with the community.

We’ll discuss this more in Building Your Own Hooks.

Complex components become hard to understand

We’ve often had to maintain components that started out simple but grew into an
unmanageable mess of stateful logic and side effects. Each lifecycle method
often contains a mix of unrelated logic. For example, components might perform
some data fetching in componentDidMount and componentDidUpdate. However,

https://github.com/facebook/react-devtools/pull/503


the same componentDidMount method might also contain some unrelated logic
that sets up event listeners, with cleanup performed in componentWillUnmount.
Mutually related code that changes together gets split apart, but completely
unrelated code ends up combined in a single method. This makes it too easy to
introduce bugs and inconsistencies.

In many cases it’s not possible to break these components into smaller ones
because the stateful logic is all over the place. It’s also difficult to test them.
This is one of the reasons many people prefer to combine React with a separate
state management library. However, that often introduces too much abstraction,
requires you to jump between different files, and makes reusing components
more difficult.

To solve this, Hooks let you split one component into smaller functions
based on what pieces are related (such as setting up a subscription or
fetching data), rather than forcing a split based on lifecycle methods. You may
also opt into managing the component’s local state with a reducer to make it
more predictable.

We’ll discuss this more in Using the Effect Hook.

Classes confuse both people and machines

In addition to making code reuse and code organization more difficult, we’ve
found that classes can be a large barrier to learning React. You have to
understand how this works in JavaScript, which is very different from how it
works in most languages. You have to remember to bind the event handlers.
Without ES2022 public class fields, the code is very verbose. People can
understand props, state, and top-down data flow perfectly well but still struggle
with classes. The distinction between function and class components in React
and when to use each one leads to disagreements even between experienced
React developers.

Additionally, React has been out for about five years, and we want to make sure
it stays relevant in the next five years. As Svelte, Angular, Glimmer, and others
show, ahead-of-time compilation of components has a lot of future potential.
Especially if it’s not limited to templates. Recently, we’ve been experimenting
with component folding using Prepack, and we’ve seen promising early results.
However, we found that class components can encourage unintentional patterns

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Public_class_fields#public_instance_fields
https://svelte.dev/
https://angular.io/
https://glimmerjs.com/
https://en.wikipedia.org/wiki/Ahead-of-time_compilation
https://github.com/facebook/react/issues/7323
https://prepack.io/


that make these optimizations fall back to a slower path. Classes present issues
for today’s tools, too. For example, classes don’t minify very well, and they
make hot reloading flaky and unreliable. We want to present an API that makes
it more likely for code to stay on the optimizable path.

To solve these problems, Hooks let you use more of React’s features without
classes. Conceptually, React components have always been closer to functions.
Hooks embrace functions, but without sacrificing the practical spirit of React.
Hooks provide access to imperative escape hatches and don’t require you to
learn complex functional or reactive programming techniques.

Examples

Hooks at a Glance is a good place to start learning Hooks.

Gradual Adoption Strategy

TLDR: There are no plans to remove classes from React.

We know that React developers are focused on shipping products and don’t have
time to look into every new API that’s being released. Hooks are very new, and
it might be better to wait for more examples and tutorials before considering
learning or adopting them.

We also understand that the bar for adding a new primitive to React is extremely
high. For curious readers, we have prepared a detailed RFC that dives into the
motivation with more details, and provides extra perspective on the specific
design decisions and related prior art.

Crucially, Hooks work side-by-side with existing code so you can adopt
them gradually. There is no rush to migrate to Hooks. We recommend avoiding
any “big rewrites”, especially for existing, complex class components. It takes a
bit of a mind shift to start “thinking in Hooks”. In our experience, it’s best to
practice using Hooks in new and non-critical components first, and ensure that
everybody on your team feels comfortable with them. After you give Hooks a
try, please feel free to send us feedback, positive or negative.

We intend for Hooks to cover all existing use cases for classes, but we will keep
supporting class components for the foreseeable future. At Facebook, we
have tens of thousands of components written as classes, and we have absolutely

https://github.com/reactjs/rfcs/pull/68
https://github.com/facebook/react/issues/new


no plans to rewrite them. Instead, we are starting to use Hooks in the new code
side by side with classes.

Frequently Asked Questions

We’ve prepared a Hooks FAQ page that answers the most common questions
about Hooks.

Next Steps

By the end of this page, you should have a rough idea of what problems Hooks
are solving, but many details are probably unclear. Don’t worry! Let’s now go
to the next page where we start learning about Hooks by example.

Hooks at a Glance

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

Hooks are backwards-compatible. This page provides an overview of Hooks for
experienced React users. This is a fast-paced overview. If you get confused, look
for a yellow box like this:

Detailed Explanation

Read the Motivation to learn why we’re introducing Hooks to React.

↑↑↑ Each section ends with a yellow box like this. They link to detailed
explanations.

📌 State Hook

This example renders a counter. When you click the button, it increments the
value:

import React, { useState } from 'react'; 
 
function Example() { 
  // Declare a new state variable, which we'll call "count" 
  const [count, setCount] = useState(0); 



 
  return ( 
    <div> 
      <p>You clicked {count} times</p> 
      <button onClick={() => setCount(count + 1)}> 
        Click me 
      </button> 
    </div> 
  ); 
}

Here, useState is a Hook (we’ll talk about what this means in a moment). We
call it inside a function component to add some local state to it. React will
preserve this state between re-renders. useState returns a pair: the current state
value and a function that lets you update it. You can call this function from an
event handler or somewhere else. It’s similar to this.setState in a class,
except it doesn’t merge the old and new state together. (We’ll show an example
comparing useState to this.state in Using the State Hook.)

The only argument to useState is the initial state. In the example above, it is 0
because our counter starts from zero. Note that unlike this.state, the state here
doesn’t have to be an object – although it can be if you want. The initial state
argument is only used during the first render.

Declaring multiple state variables

You can use the State Hook more than once in a single component:

The array destructuring syntax lets us give different names to the state variables
we declared by calling useState. These names aren’t a part of the useState
API. Instead, React assumes that if you call useState many times, you do it in
the same order during every render. We’ll come back to why this works and
when this is useful later.

But what is a Hook?

function ExampleWithManyStates() {
 // Declare multiple state variables!
 const [age, setAge] = useState(42);
 const [fruit, setFruit] = useState('banana');
 const [todos, setTodos] = useState([{ text: 'Learn Hooks' }]);
 // ...
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring


Hooks are functions that let you “hook into” React state and lifecycle features
from function components. Hooks don’t work inside classes – they let you use
React without classes. (We don’t recommend rewriting your existing
components overnight but you can start using Hooks in the new ones if you’d
like.)

React provides a few built-in Hooks like useState. You can also create your
own Hooks to reuse stateful behavior between different components. We’ll look
at the built-in Hooks first.

Detailed Explanation

You can learn more about the State Hook on a dedicated page: Using the
State Hook.

⚡  Effect Hook

You’ve likely performed data fetching, subscriptions, or manually changing the
DOM from React components before. We call these operations “side effects” (or
“effects” for short) because they can affect other components and can’t be done
during rendering.

The Effect Hook, useEffect, adds the ability to perform side effects from a
function component. It serves the same purpose as componentDidMount, 
componentDidUpdate, and componentWillUnmount in React classes, but unified
into a single API. (We’ll show examples comparing useEffect to these methods
in Using the Effect Hook.)

For example, this component sets the document title after React updates the
DOM:

import React, { useState, useEffect } from 'react'; 
 
function Example() { 
  const [count, setCount] = useState(0); 
 
  // Similar to componentDidMount and componentDidUpdate: 
  useEffect(() => { 
    // Update the document title using the browser API 
    document.title = `You clicked ${count} times`; 
  }); 
 
  return ( 



    <div> 
      <p>You clicked {count} times</p> 
      <button onClick={() => setCount(count + 1)}> 
        Click me 
      </button> 
    </div> 
  ); 
}

When you call useEffect, you’re telling React to run your “effect” function
after flushing changes to the DOM. Effects are declared inside the component so
they have access to its props and state. By default, React runs the effects after
every render – including the first render. (We’ll talk more about how this
compares to class lifecycles in Using the Effect Hook.)

Effects may also optionally specify how to “clean up” after them by returning a
function. For example, this component uses an effect to subscribe to a friend’s
online status, and cleans up by unsubscribing from it:

import React, { useState, useEffect } from 'react'; 
 
function FriendStatus(props) { 
  const [isOnline, setIsOnline] = useState(null); 
 
  function handleStatusChange(status) { 
    setIsOnline(status.isOnline); 
  } 
 
  useEffect(() => { 
    ChatAPI.subscribeToFriendStatus(props.friend.id, 
handleStatusChange); 
 
    return () => { 
      ChatAPI.unsubscribeFromFriendStatus(props.friend.id, 
handleStatusChange); 
    }; 
  }); 
 
  if (isOnline === null) { 
    return 'Loading...'; 
  } 
  return isOnline ? 'Online' : 'Offline'; 
}

In this example, React would unsubscribe from our ChatAPI when the
component unmounts, as well as before re-running the effect due to a



subsequent render. (If you want, there’s a way to tell React to skip re-
subscribing if the props.friend.id we passed to ChatAPI didn’t change.)

Just like with useState, you can use more than a single effect in a component:

function FriendStatusWithCounter(props) { 
  const [count, setCount] = useState(0); 
  useEffect(() => { 
    document.title = `You clicked ${count} times`; 
  }); 
 
  const [isOnline, setIsOnline] = useState(null); 
  useEffect(() => { 
    ChatAPI.subscribeToFriendStatus(props.friend.id, 
handleStatusChange); 
    return () => { 
      ChatAPI.unsubscribeFromFriendStatus(props.friend.id, 
handleStatusChange); 
    }; 
  }); 
 
  function handleStatusChange(status) { 
    setIsOnline(status.isOnline); 
  } 
  // ...

Hooks let you organize side effects in a component by what pieces are related
(such as adding and removing a subscription), rather than forcing a split based
on lifecycle methods.

Detailed Explanation

You can learn more about useEffect on a dedicated page: Using the Effect
Hook.

✌  Rules of Hooks

Hooks are JavaScript functions, but they impose two additional rules:

Only call Hooks at the top level. Don’t call Hooks inside loops,
conditions, or nested functions.
Only call Hooks from React function components. Don’t call Hooks from
regular JavaScript functions. (There is just one other valid place to call
Hooks – your own custom Hooks. We’ll learn about them in a moment.)



We provide a linter plugin to enforce these rules automatically. We understand
these rules might seem limiting or confusing at first, but they are essential to
making Hooks work well.

Detailed Explanation

You can learn more about these rules on a dedicated page: Rules of Hooks.

💡 Building Your Own Hooks

Sometimes, we want to reuse some stateful logic between components.
Traditionally, there were two popular solutions to this problem: higher-order
components and render props. Custom Hooks let you do this, but without adding
more components to your tree.

Earlier on this page, we introduced a FriendStatus component that calls the 
useState and useEffect Hooks to subscribe to a friend’s online status. Let’s
say we also want to reuse this subscription logic in another component.

First, we’ll extract this logic into a custom Hook called useFriendStatus:

import React, { useState, useEffect } from 'react'; 
 
function useFriendStatus(friendID) { 
  const [isOnline, setIsOnline] = useState(null); 
 
  function handleStatusChange(status) { 
    setIsOnline(status.isOnline); 
  } 
 
  useEffect(() => { 
    ChatAPI.subscribeToFriendStatus(friendID, handleStatusChange); 
    return () => { 
      ChatAPI.unsubscribeFromFriendStatus(friendID, 
handleStatusChange); 
    }; 
  }); 
 
  return isOnline; 
}

It takes friendID as an argument, and returns whether our friend is online.

Now we can use it from both components:

https://www.npmjs.com/package/eslint-plugin-react-hooks


function FriendStatus(props) { 
  const isOnline = useFriendStatus(props.friend.id); 
 
  if (isOnline === null) { 
    return 'Loading...'; 
  } 
  return isOnline ? 'Online' : 'Offline'; 
}

function FriendListItem(props) { 
  const isOnline = useFriendStatus(props.friend.id); 
 
  return ( 
    <li style={{ color: isOnline ? 'green' : 'black' }}> 
      {props.friend.name} 
    </li> 
  ); 
}

The state of each component is completely independent. Hooks are a way to
reuse stateful logic, not state itself. In fact, each call to a Hook has a completely
isolated state – so you can even use the same custom Hook twice in one
component.

Custom Hooks are more of a convention than a feature. If a function’s name
starts with “use” and it calls other Hooks, we say it is a custom Hook. The 
useSomething naming convention is how our linter plugin is able to find bugs in
the code using Hooks.

You can write custom Hooks that cover a wide range of use cases like form
handling, animation, declarative subscriptions, timers, and probably many more
we haven’t considered. We are excited to see what custom Hooks the React
community will come up with.

Detailed Explanation

You can learn more about custom Hooks on a dedicated page: Building
Your Own Hooks.

🔌 Other Hooks

There are a few less commonly used built-in Hooks that you might find useful.
For example, useContext lets you subscribe to React context without
introducing nesting:



function Example() { 
  const locale = useContext(LocaleContext); 
  const theme = useContext(ThemeContext); 
  // ... 
}

And useReducer lets you manage local state of complex components with a
reducer:

function Todos() { 
  const [todos, dispatch] = useReducer(todosReducer); 
  // ...

Detailed Explanation

You can learn more about all the built-in Hooks on a dedicated page: Hooks
API Reference.

Next Steps

Phew, that was fast! If some things didn’t quite make sense or you’d like to learn
more in detail, you can read the next pages, starting with the State Hook
documentation.

You can also check out the Hooks API reference and the Hooks FAQ.

Finally, don’t miss the introduction page which explains why we’re adding
Hooks and how we’ll start using them side by side with classes – without
rewriting our apps.

Using the State Hook

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

The introduction page used this example to get familiar with Hooks:

import React, { useState } from 'react'; 
 
function Example() { 
  // Declare a new state variable, which we'll call "count" 
  const [count, setCount] = useState(0); 
 



  return ( 
    <div> 
      <p>You clicked {count} times</p> 
      <button onClick={() => setCount(count + 1)}> 
        Click me 
      </button> 
    </div> 
  ); 
}

We’ll start learning about Hooks by comparing this code to an equivalent class
example.

Equivalent Class Example

If you used classes in React before, this code should look familiar:

The state starts as { count: 0 }, and we increment state.count when the user
clicks a button by calling this.setState(). We’ll use snippets from this class
throughout the page.

Note

class Example extends React.Component {
 constructor(props) {
   super(props);
   this.state = {
     count: 0
   };
 }

 render() {
   return (
     <div>
       <p>You clicked {this.state.count} times</p>
       <button onClick={() => this.setState({ count: this.state.cou
         Click me
       </button>
     </div>
   );
 }
}



You might be wondering why we’re using a counter here instead of a more
realistic example. This is to help us focus on the API while we’re still
making our first steps with Hooks.

Hooks and Function Components

As a reminder, function components in React look like this:

or this:

You might have previously known these as “stateless components”. We’re now
introducing the ability to use React state from these, so we prefer the name
“function components”.

Hooks don’t work inside classes. But you can use them instead of writing
classes.

What’s a Hook?

Our new example starts by importing the useState Hook from React:

import React, { useState } from 'react'; 
 
function Example() { 
  // ... 
}

What is a Hook? A Hook is a special function that lets you “hook into” React
features. For example, useState is a Hook that lets you add React state to
function components. We’ll learn other Hooks later.

const Example = (props) => {
 // You can use Hooks here!
 return <div />;
}

function Example(props) {
 // You can use Hooks here!
 return <div />;
}



When would I use a Hook? If you write a function component and realize you
need to add some state to it, previously you had to convert it to a class. Now you
can use a Hook inside the existing function component. We’re going to do that
right now!

Note:

There are some special rules about where you can and can’t use Hooks
within a component. We’ll learn them in Rules of Hooks.

Declaring a State Variable

In a class, we initialize the count state to 0 by setting this.state to { count: 
0 } in the constructor:

class Example extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { 
      count: 0 
    }; 
  }

In a function component, we have no this, so we can’t assign or read 
this.state. Instead, we call the useState Hook directly inside our component:

import React, { useState } from 'react'; 
 
function Example() { 
  // Declare a new state variable, which we'll call "count" 
  const [count, setCount] = useState(0);

What does calling useState do? It declares a “state variable”. Our variable is
called count but we could call it anything else, like banana. This is a way to
“preserve” some values between the function calls — useState is a new way to
use the exact same capabilities that this.state provides in a class. Normally,
variables “disappear” when the function exits but state variables are preserved
by React.

What do we pass to useState as an argument? The only argument to the 
useState() Hook is the initial state. Unlike with classes, the state doesn’t have
to be an object. We can keep a number or a string if that’s all we need. In our
example, we just want a number for how many times the user clicked, so pass 0



as initial state for our variable. (If we wanted to store two different values in
state, we would call useState() twice.)

What does useState return? It returns a pair of values: the current state and a
function that updates it. This is why we write const [count, setCount] = 
useState(). This is similar to this.state.count and this.setState in a class,
except you get them in a pair. If you’re not familiar with the syntax we used,
we’ll come back to it at the bottom of this page.

Now that we know what the useState Hook does, our example should make
more sense:

import React, { useState } from 'react'; 
 
function Example() { 
  // Declare a new state variable, which we'll call "count" 
  const [count, setCount] = useState(0);

We declare a state variable called count, and set it to 0. React will remember its
current value between re-renders, and provide the most recent one to our
function. If we want to update the current count, we can call setCount.

Note

You might be wondering: why is useState not named createState
instead?

“Create” wouldn’t be quite accurate because the state is only created the
first time our component renders. During the next renders, useState gives
us the current state. Otherwise it wouldn’t be “state” at all! There’s also a
reason why Hook names always start with use. We’ll learn why later in the
Rules of Hooks.

Reading State

When we want to display the current count in a class, we read 
this.state.count:

In a function, we can use count directly:

 <p>You clicked {this.state.count} times</p>



Updating State

In a class, we need to call this.setState() to update the count state:

  <button onClick={() => this.setState({ count: this.state.count + 
1 })}> 
    Click me 
  </button>

In a function, we already have setCount and count as variables so we don’t
need this:

  <button onClick={() => setCount(count + 1)}> 
    Click me 
  </button>

Recap

Let’s now recap what we learned line by line and check our understanding.

 1:  import React, { useState } from 'react'; 
 2: 
 3:  function Example() { 
 4:    const [count, setCount] = useState(0); 
 5: 
 6:    return ( 
 7:      <div> 
 8:        <p>You clicked {count} times</p> 
 9:        <button onClick={() => setCount(count + 1)}> 
10:         Click me 
11:        </button> 
12:      </div> 
13:    ); 
14:  }

Line 1: We import the useState Hook from React. It lets us keep local
state in a function component.
Line 4: Inside the Example component, we declare a new state variable by
calling the useState Hook. It returns a pair of values, to which we give
names. We’re calling our variable count because it holds the number of
button clicks. We initialize it to zero by passing 0 as the only useState

 <p>You clicked {count} times</p>



argument. The second returned item is itself a function. It lets us update the
count so we’ll name it setCount.
Line 9: When the user clicks, we call setCount with a new value. React
will then re-render the Example component, passing the new count value to
it.

This might seem like a lot to take in at first. Don’t rush it! If you’re lost in the
explanation, look at the code above again and try to read it from top to bottom.
We promise that once you try to “forget” how state works in classes, and look at
this code with fresh eyes, it will make sense.

Tip: What Do Square Brackets Mean?

You might have noticed the square brackets when we declare a state variable:

The names on the left aren’t a part of the React API. You can name your own
state variables:

This JavaScript syntax is called “array destructuring”. It means that we’re
making two new variables fruit and setFruit, where fruit is set to the first
value returned by useState, and setFruit is the second. It is equivalent to this
code:

When we declare a state variable with useState, it returns a pair — an array
with two items. The first item is the current value, and the second is a function
that lets us update it. Using [0] and [1] to access them is a bit confusing
because they have a specific meaning. This is why we use array destructuring
instead.

Note

You might be curious how React knows which component useState
corresponds to since we’re not passing anything like this back to React.

 const [count, setCount] = useState(0);

 const [fruit, setFruit] = useState('banana');

 var fruitStateVariable = useState('banana'); // Returns a pair
 var fruit = fruitStateVariable[0]; // First item in a pair
 var setFruit = fruitStateVariable[1]; // Second item in a pair

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring


We’ll answer this question and many others in the FAQ section.

Tip: Using Multiple State Variables

Declaring state variables as a pair of [something, setSomething] is also handy
because it lets us give different names to different state variables if we want to
use more than one:

In the above component, we have age, fruit, and todos as local variables, and
we can update them individually:

You don’t have to use many state variables. State variables can hold objects and
arrays just fine, so you can still group related data together. However, unlike 
this.setState in a class, updating a state variable always replaces it instead of
merging it.

We provide more recommendations on splitting independent state variables in
the FAQ.

Next Steps

On this page we’ve learned about one of the Hooks provided by React, called 
useState. We’re also sometimes going to refer to it as the “State Hook”. It lets
us add local state to React function components – which we did for the first time
ever!

We also learned a little bit more about what Hooks are. Hooks are functions that
let you “hook into” React features from function components. Their names
always start with use, and there are more Hooks we haven’t seen yet.

function ExampleWithManyStates() {
 // Declare multiple state variables!
 const [age, setAge] = useState(42);
 const [fruit, setFruit] = useState('banana');
 const [todos, setTodos] = useState([{ text: 'Learn Hooks' }]);

 function handleOrangeClick() {
   // Similar to this.setState({ fruit: 'orange' })
   setFruit('orange');
 }



Now let’s continue by learning the next Hook: useEffect. It lets you perform
side effects in components, and is similar to lifecycle methods in classes.

Using the Effect Hook

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

The Effect Hook lets you perform side effects in function components:

import React, { useState, useEffect } from 'react'; 
 
function Example() { 
  const [count, setCount] = useState(0); 
 
  // Similar to componentDidMount and componentDidUpdate: 
  useEffect(() => { 
    // Update the document title using the browser API 
    document.title = `You clicked ${count} times`; 
  }); 
 
  return ( 
    <div> 
      <p>You clicked {count} times</p> 
      <button onClick={() => setCount(count + 1)}> 
        Click me 
      </button> 
    </div> 
  ); 
}

This snippet is based on the counter example from the previous page, but we
added a new feature to it: we set the document title to a custom message
including the number of clicks.

Data fetching, setting up a subscription, and manually changing the DOM in
React components are all examples of side effects. Whether or not you’re used
to calling these operations “side effects” (or just “effects”), you’ve likely
performed them in your components before.

Tip

If you’re familiar with React class lifecycle methods, you can think of 
useEffect Hook as componentDidMount, componentDidUpdate, and 



componentWillUnmount combined.

There are two common kinds of side effects in React components: those that
don’t require cleanup, and those that do. Let’s look at this distinction in more
detail.

Effects Without Cleanup

Sometimes, we want to run some additional code after React has updated the
DOM. Network requests, manual DOM mutations, and logging are common
examples of effects that don’t require a cleanup. We say that because we can run
them and immediately forget about them. Let’s compare how classes and Hooks
let us express such side effects.

Example Using Classes

In React class components, the render method itself shouldn’t cause side
effects. It would be too early – we typically want to perform our effects after
React has updated the DOM.

This is why in React classes, we put side effects into componentDidMount and 
componentDidUpdate. Coming back to our example, here is a React counter
class component that updates the document title right after React makes changes
to the DOM:

class Example extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { 
      count: 0 
    }; 
  } 
 
  componentDidMount() { 
    document.title = `You clicked ${this.state.count} times`; 
  } 
 
  componentDidUpdate() { 
    document.title = `You clicked ${this.state.count} times`; 
  } 
 
  render() { 
    return ( 



      <div> 
        <p>You clicked {this.state.count} times</p> 
        <button onClick={() => this.setState({ count: 
this.state.count + 1 })}> 
          Click me 
        </button> 
      </div> 
    ); 
  } 
}

Note how we have to duplicate the code between these two lifecycle methods
in class.

This is because in many cases we want to perform the same side effect
regardless of whether the component just mounted, or if it has been updated.
Conceptually, we want it to happen after every render – but React class
components don’t have a method like this. We could extract a separate method
but we would still have to call it in two places.

Now let’s see how we can do the same with the useEffect Hook.

Example Using Hooks

We’ve already seen this example at the top of this page, but let’s take a closer
look at it:

import React, { useState, useEffect } from 'react'; 
 
function Example() { 
  const [count, setCount] = useState(0); 
 
  useEffect(() => { 
    document.title = `You clicked ${count} times`; 
  }); 
 
  return ( 
    <div> 
      <p>You clicked {count} times</p> 
      <button onClick={() => setCount(count + 1)}> 
        Click me 
      </button> 
    </div> 
  ); 
}



What does useEffect do? By using this Hook, you tell React that your
component needs to do something after render. React will remember the
function you passed (we’ll refer to it as our “effect”), and call it later after
performing the DOM updates. In this effect, we set the document title, but we
could also perform data fetching or call some other imperative API.

Why is useEffect called inside a component? Placing useEffect inside the
component lets us access the count state variable (or any props) right from the
effect. We don’t need a special API to read it – it’s already in the function scope.
Hooks embrace JavaScript closures and avoid introducing React-specific APIs
where JavaScript already provides a solution.

Does useEffect run after every render? Yes! By default, it runs both after the
first render and after every update. (We will later talk about how to customize
this.) Instead of thinking in terms of “mounting” and “updating”, you might find
it easier to think that effects happen “after render”. React guarantees the DOM
has been updated by the time it runs the effects.

Detailed Explanation

Now that we know more about effects, these lines should make sense:

We declare the count state variable, and then we tell React we need to use an
effect. We pass a function to the useEffect Hook. This function we pass is our
effect. Inside our effect, we set the document title using the document.title
browser API. We can read the latest count inside the effect because it’s in the
scope of our function. When React renders our component, it will remember the
effect we used, and then run our effect after updating the DOM. This happens
for every render, including the first one.

Experienced JavaScript developers might notice that the function passed to 
useEffect is going to be different on every render. This is intentional. In fact,

function Example() {
 const [count, setCount] = useState(0);

 useEffect(() => {
   document.title = `You clicked ${count} times`;
 });
}



this is what lets us read the count value from inside the effect without worrying
about it getting stale. Every time we re-render, we schedule a different effect,
replacing the previous one. In a way, this makes the effects behave more like a
part of the render result – each effect “belongs” to a particular render. We will
see more clearly why this is useful later on this page.

Tip

Unlike componentDidMount or componentDidUpdate, effects scheduled
with useEffect don’t block the browser from updating the screen. This
makes your app feel more responsive. The majority of effects don’t need to
happen synchronously. In the uncommon cases where they do (such as
measuring the layout), there is a separate useLayoutEffect Hook with an
API identical to useEffect.

Effects with Cleanup

Earlier, we looked at how to express side effects that don’t require any cleanup.
However, some effects do. For example, we might want to set up a
subscription to some external data source. In that case, it is important to clean
up so that we don’t introduce a memory leak! Let’s compare how we can do it
with classes and with Hooks.

Example Using Classes

In a React class, you would typically set up a subscription in 
componentDidMount, and clean it up in componentWillUnmount. For example,
let’s say we have a ChatAPI module that lets us subscribe to a friend’s online
status. Here’s how we might subscribe and display that status using a class:

class FriendStatus extends React.Component { 
  constructor(props) { 
    super(props); 
    this.state = { isOnline: null }; 
    this.handleStatusChange = this.handleStatusChange.bind(this); 
  } 
 
  componentDidMount() { 
    ChatAPI.subscribeToFriendStatus( 
      this.props.friend.id, 
      this.handleStatusChange 
    ); 



  } 
 
  componentWillUnmount() { 
    ChatAPI.unsubscribeFromFriendStatus( 
      this.props.friend.id, 
      this.handleStatusChange 
    ); 
  } 
 
  handleStatusChange(status) { 
    this.setState({ 
      isOnline: status.isOnline 
    }); 
  } 
 
  render() { 
    if (this.state.isOnline === null) { 
      return 'Loading...'; 
    } 
    return this.state.isOnline ? 'Online' : 'Offline'; 
  } 
}

Notice how componentDidMount and componentWillUnmount need to mirror
each other. Lifecycle methods force us to split this logic even though
conceptually code in both of them is related to the same effect.

Note

Eagle-eyed readers may notice that this example also needs a 
componentDidUpdate method to be fully correct. We’ll ignore this for now
but will come back to it in a later section of this page.

Example Using Hooks

Let’s see how we could write this component with Hooks.

You might be thinking that we’d need a separate effect to perform the cleanup.
But code for adding and removing a subscription is so tightly related that 
useEffect is designed to keep it together. If your effect returns a function, React
will run it when it is time to clean up:

import React, { useState, useEffect } from 'react'; 
 
function FriendStatus(props) { 



  const [isOnline, setIsOnline] = useState(null); 
 
  useEffect(() => { 
    function handleStatusChange(status) { 
      setIsOnline(status.isOnline); 
    } 
 
    ChatAPI.subscribeToFriendStatus(props.friend.id, 
handleStatusChange); 
    // Specify how to clean up after this effect: 
    return function cleanup() { 
      ChatAPI.unsubscribeFromFriendStatus(props.friend.id, 
handleStatusChange); 
    }; 
  }); 
 
  if (isOnline === null) { 
    return 'Loading...'; 
  } 
  return isOnline ? 'Online' : 'Offline'; 
}

Why did we return a function from our effect? This is the optional cleanup
mechanism for effects. Every effect may return a function that cleans up after it.
This lets us keep the logic for adding and removing subscriptions close to each
other. They’re part of the same effect!

When exactly does React clean up an effect? React performs the cleanup
when the component unmounts. However, as we learned earlier, effects run for
every render and not just once. This is why React also cleans up effects from the
previous render before running the effects next time. We’ll discuss why this
helps avoid bugs and how to opt out of this behavior in case it creates
performance issues later below.

Note

We don’t have to return a named function from the effect. We called it 
cleanup here to clarify its purpose, but you could return an arrow function
or call it something different.

Recap

We’ve learned that useEffect lets us express different kinds of side effects after
a component renders. Some effects might require cleanup so they return a



function:

Other effects might not have a cleanup phase, and don’t return anything.

The Effect Hook unifies both use cases with a single API.

If you feel like you have a decent grasp on how the Effect Hook works, or if
you feel overwhelmed, you can jump to the next page about Rules of Hooks
now.

Tips for Using Effects

We’ll continue this page with an in-depth look at some aspects of useEffect
that experienced React users will likely be curious about. Don’t feel obligated to
dig into them now. You can always come back to this page to learn more details
about the Effect Hook.

Tip: Use Multiple Effects to Separate Concerns

One of the problems we outlined in the Motivation for Hooks is that class
lifecycle methods often contain unrelated logic, but related logic gets broken up
into several methods. Here is a component that combines the counter and the
friend status indicator logic from the previous examples:

 useEffect(() => {
   function handleStatusChange(status) {
     setIsOnline(status.isOnline);
   }

   ChatAPI.subscribeToFriendStatus(props.friend.id, handleStatusCha
   return () => {
     ChatAPI.unsubscribeFromFriendStatus(props.friend.id, handleSta
   };
 });

 useEffect(() => {
   document.title = `You clicked ${count} times`;
 });



Note how the logic that sets document.title is split between 
componentDidMount and componentDidUpdate. The subscription logic is also
spread between componentDidMount and componentWillUnmount. And 
componentDidMount contains code for both tasks.

So, how can Hooks solve this problem? Just like you can use the State Hook
more than once, you can also use several effects. This lets us separate unrelated
logic into different effects:

function FriendStatusWithCounter(props) { 
  const [count, setCount] = useState(0); 

class FriendStatusWithCounter extends React.Component {
 constructor(props) {
   super(props);
   this.state = { count: 0, isOnline: null };
   this.handleStatusChange = this.handleStatusChange.bind(this);
 }

 componentDidMount() {
   document.title = `You clicked ${this.state.count} times`;
   ChatAPI.subscribeToFriendStatus(
     this.props.friend.id,
     this.handleStatusChange
   );
 }

 componentDidUpdate() {
   document.title = `You clicked ${this.state.count} times`;
 }

 componentWillUnmount() {
   ChatAPI.unsubscribeFromFriendStatus(
     this.props.friend.id,
     this.handleStatusChange
   );
 }

 handleStatusChange(status) {
   this.setState({
     isOnline: status.isOnline
   });
 }
 // ...



  useEffect(() => { 
    document.title = `You clicked ${count} times`; 
  }); 
 
  const [isOnline, setIsOnline] = useState(null); 
  useEffect(() => { 
    function handleStatusChange(status) { 
      setIsOnline(status.isOnline); 
    } 
 
    ChatAPI.subscribeToFriendStatus(props.friend.id, 
handleStatusChange); 
    return () => { 
      ChatAPI.unsubscribeFromFriendStatus(props.friend.id, 
handleStatusChange); 
    }; 
  }); 
  // ... 
}

Hooks let us split the code based on what it is doing rather than a lifecycle
method name. React will apply every effect used by the component, in the order
they were specified.

Explanation: Why Effects Run on Each Update

If you’re used to classes, you might be wondering why the effect cleanup phase
happens after every re-render, and not just once during unmounting. Let’s look
at a practical example to see why this design helps us create components with
fewer bugs.

Earlier on this page, we introduced an example FriendStatus component that
displays whether a friend is online or not. Our class reads friend.id from 
this.props, subscribes to the friend status after the component mounts, and
unsubscribes during unmounting:

 componentDidMount() {
   ChatAPI.subscribeToFriendStatus(
     this.props.friend.id,
     this.handleStatusChange
   );
 }

 componentWillUnmount() {



But what happens if the friend prop changes while the component is on the
screen? Our component would continue displaying the online status of a
different friend. This is a bug. We would also cause a memory leak or crash
when unmounting since the unsubscribe call would use the wrong friend ID.

In a class component, we would need to add componentDidUpdate to handle this
case:

  componentDidMount() { 
    ChatAPI.subscribeToFriendStatus( 
      this.props.friend.id, 
      this.handleStatusChange 
    ); 
  } 
 
  componentDidUpdate(prevProps) { 
    // Unsubscribe from the previous friend.id 
    ChatAPI.unsubscribeFromFriendStatus( 
      prevProps.friend.id, 
      this.handleStatusChange 
    ); 
    // Subscribe to the next friend.id 
    ChatAPI.subscribeToFriendStatus( 
      this.props.friend.id, 
      this.handleStatusChange 
    ); 
  } 
 
  componentWillUnmount() { 
    ChatAPI.unsubscribeFromFriendStatus( 
      this.props.friend.id, 
      this.handleStatusChange 
    ); 
  }

Forgetting to handle componentDidUpdate properly is a common source of bugs
in React applications.

Now consider the version of this component that uses Hooks:

   ChatAPI.unsubscribeFromFriendStatus(
     this.props.friend.id,
     this.handleStatusChange
   );
 }



It doesn’t suffer from this bug. (But we also didn’t make any changes to it.)

There is no special code for handling updates because useEffect handles them
by default. It cleans up the previous effects before applying the next effects. To
illustrate this, here is a sequence of subscribe and unsubscribe calls that this
component could produce over time:

This behavior ensures consistency by default and prevents bugs that are
common in class components due to missing update logic.

Tip: Optimizing Performance by Skipping Effects

In some cases, cleaning up or applying the effect after every render might create
a performance problem. In class components, we can solve this by writing an
extra comparison with prevProps or prevState inside componentDidUpdate:

function FriendStatus(props) {
 // ...
 useEffect(() => {
   // ...
   ChatAPI.subscribeToFriendStatus(props.friend.id, handleStatusCha
   return () => {
     ChatAPI.unsubscribeFromFriendStatus(props.friend.id, handleSta
   };
 });

// Mount with { friend: { id: 100 } } props
ChatAPI.subscribeToFriendStatus(100, handleStatusChange);     // Run

// Update with { friend: { id: 200 } } props
ChatAPI.unsubscribeFromFriendStatus(100, handleStatusChange); // Cle
ChatAPI.subscribeToFriendStatus(200, handleStatusChange);     // Run

// Update with { friend: { id: 300 } } props
ChatAPI.unsubscribeFromFriendStatus(200, handleStatusChange); // Cle
ChatAPI.subscribeToFriendStatus(300, handleStatusChange);     // Run

// Unmount
ChatAPI.unsubscribeFromFriendStatus(300, handleStatusChange); // Cle



This requirement is common enough that it is built into the useEffect Hook
API. You can tell React to skip applying an effect if certain values haven’t
changed between re-renders. To do so, pass an array as an optional second
argument to useEffect:

useEffect(() => { 
  document.title = `You clicked ${count} times`; 
}, [count]); // Only re-run the effect if count changes

In the example above, we pass [count] as the second argument. What does this
mean? If the count is 5, and then our component re-renders with count still
equal to 5, React will compare [5] from the previous render and [5] from the
next render. Because all items in the array are the same (5 === 5), React would
skip the effect. That’s our optimization.

When we render with count updated to 6, React will compare the items in the 
[5] array from the previous render to items in the [6] array from the next
render. This time, React will re-apply the effect because 5 !== 6. If there are
multiple items in the array, React will re-run the effect even if just one of them is
different.

This also works for effects that have a cleanup phase:

useEffect(() => { 
  function handleStatusChange(status) { 
    setIsOnline(status.isOnline); 
  } 
 
  ChatAPI.subscribeToFriendStatus(props.friend.id, 
handleStatusChange); 
  return () => { 
    ChatAPI.unsubscribeFromFriendStatus(props.friend.id, 
handleStatusChange); 
  }; 
}, [props.friend.id]); // Only re-subscribe if props.friend.id 
changes

componentDidUpdate(prevProps, prevState) {
 if (prevState.count !== this.state.count) {
   document.title = `You clicked ${this.state.count} times`;
 }
}



In the future, the second argument might get added automatically by a build-
time transformation.

Note

If you use this optimization, make sure the array includes all values from
the component scope (such as props and state) that change over time
and that are used by the effect. Otherwise, your code will reference stale
values from previous renders. Learn more about how to deal with functions
and what to do when the array changes too often.

If you want to run an effect and clean it up only once (on mount and
unmount), you can pass an empty array ([]) as a second argument. This
tells React that your effect doesn’t depend on any values from props or
state, so it never needs to re-run. This isn’t handled as a special case – it
follows directly from how the dependencies array always works.

If you pass an empty array ([]), the props and state inside the effect will
always have their initial values. While passing [] as the second argument is
closer to the familiar componentDidMount and componentWillUnmount
mental model, there are usually better solutions to avoid re-running effects
too often. Also, don’t forget that React defers running useEffect until after
the browser has painted, so doing extra work is less of a problem.

We recommend using the exhaustive-deps rule as part of our eslint-
plugin-react-hooks package. It warns when dependencies are specified
incorrectly and suggests a fix.

Next Steps

Congratulations! This was a long page, but hopefully by the end most of your
questions about effects were answered. You’ve learned both the State Hook and
the Effect Hook, and there is a lot you can do with both of them combined. They
cover most of the use cases for classes – and where they don’t, you might find
the additional Hooks helpful.

We’re also starting to see how Hooks solve problems outlined in Motivation.
We’ve seen how effect cleanup avoids duplication in componentDidUpdate and 
componentWillUnmount, brings related code closer together, and helps us avoid

https://github.com/facebook/react/issues/14920
https://www.npmjs.com/package/eslint-plugin-react-hooks#installation


bugs. We’ve also seen how we can separate effects by their purpose, which is
something we couldn’t do in classes at all.

At this point you might be questioning how Hooks work. How can React know
which useState call corresponds to which state variable between re-renders?
How does React “match up” previous and next effects on every update? On the
next page we will learn about the Rules of Hooks – they’re essential to
making Hooks work.

Rules of Hooks

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

Hooks are JavaScript functions, but you need to follow two rules when using
them. We provide a linter plugin to enforce these rules automatically:

Only Call Hooks at the Top Level

Don’t call Hooks inside loops, conditions, or nested functions. Instead,
always use Hooks at the top level of your React function, before any early
returns. By following this rule, you ensure that Hooks are called in the same
order each time a component renders. That’s what allows React to correctly
preserve the state of Hooks between multiple useState and useEffect calls. (If
you’re curious, we’ll explain this in depth below.)

Only Call Hooks from React Functions

Don’t call Hooks from regular JavaScript functions. Instead, you can:

✅ Call Hooks from React function components.
✅  Call Hooks from custom Hooks (we’ll learn about them on the next
page).

By following this rule, you ensure that all stateful logic in a component is
clearly visible from its source code.

ESLint Plugin

https://www.npmjs.com/package/eslint-plugin-react-hooks


We released an ESLint plugin called eslint-plugin-react-hooks that enforces
these two rules. You can add this plugin to your project if you’d like to try it:

This plugin is included by default in Create React App.

You can skip to the next page explaining how to write your own Hooks now.
On this page, we’ll continue by explaining the reasoning behind these rules.

Explanation

As we learned earlier, we can use multiple State or Effect Hooks in a single
component:

npm install eslint-plugin-react-hooks --save-dev

// Your ESLint configuration
{
 "plugins": [
   // ...
   "react-hooks"
 ],
 "rules": {
   // ...
   "react-hooks/rules-of-hooks": "error", // Checks rules of Hooks
   "react-hooks/exhaustive-deps": "warn" // Checks effect dependenc
 }
}

function Form() {
 // 1. Use the name state variable
 const [name, setName] = useState('Mary');

 // 2. Use an effect for persisting the form
 useEffect(function persistForm() {
   localStorage.setItem('formData', name);
 });

 // 3. Use the surname state variable
 const [surname, setSurname] = useState('Poppins');

 // 4. Use an effect for updating the title
 useEffect(function updateTitle() {

https://www.npmjs.com/package/eslint-plugin-react-hooks


So how does React know which state corresponds to which useState call? The
answer is that React relies on the order in which Hooks are called. Our
example works because the order of the Hook calls is the same on every render:

As long as the order of the Hook calls is the same between renders, React can
associate some local state with each of them. But what happens if we put a Hook
call (for example, the persistForm effect) inside a condition?

The name !== '' condition is true on the first render, so we run this Hook.
However, on the next render the user might clear the form, making the condition

   document.title = name + ' ' + surname;
 });

 // ...
}

// ------------
// First render
// ------------
useState('Mary')           // 1. Initialize the name state variable 
useEffect(persistForm)     // 2. Add an effect for persisting the fo
useState('Poppins')        // 3. Initialize the surname state variab
useEffect(updateTitle)     // 4. Add an effect for updating the titl

// -------------
// Second render
// -------------
useState('Mary')           // 1. Read the name state variable (argum
useEffect(persistForm)     // 2. Replace the effect for persisting t
useState('Poppins')        // 3. Read the surname state variable (ar
useEffect(updateTitle)     // 4. Replace the effect for updating the

// ...

 // 🔴 We're breaking the first rule by using a Hook in a condition
 if (name !== '') {
   useEffect(function persistForm() {
     localStorage.setItem('formData', name);
   });
 }



false. Now that we skip this Hook during rendering, the order of the Hook calls
becomes different:

React wouldn’t know what to return for the second useState Hook call. React
expected that the second Hook call in this component corresponds to the 
persistForm effect, just like during the previous render, but it doesn’t anymore.
From that point, every next Hook call after the one we skipped would also shift
by one, leading to bugs.

This is why Hooks must be called on the top level of our components. If we
want to run an effect conditionally, we can put that condition inside our Hook:

Note that you don’t need to worry about this problem if you use the
provided lint rule. But now you also know why Hooks work this way, and
which issues the rule is preventing.

Next Steps

Finally, we’re ready to learn about writing your own Hooks! Custom Hooks let
you combine Hooks provided by React into your own abstractions, and reuse
common stateful logic between different components.

Building Your Own Hooks

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

useState('Mary')           // 1. Read the name state variable (argum
// useEffect(persistForm)  // 🔴 This Hook was skipped!
useState('Poppins')        // 🔴 2 (but was 3). Fail to read the sur
useEffect(updateTitle)     // 🔴 3 (but was 4). Fail to replace the 

 useEffect(function persistForm() {
   // 👍 We're not breaking the first rule anymore
   if (name !== '') {
     localStorage.setItem('formData', name);
   }
 });

https://www.npmjs.com/package/eslint-plugin-react-hooks


Building your own Hooks lets you extract component logic into reusable
functions.

When we were learning about using the Effect Hook, we saw this component
from a chat application that displays a message indicating whether a friend is
online or offline:

import React, { useState, useEffect } from 'react'; 
 
function FriendStatus(props) { 
  const [isOnline, setIsOnline] = useState(null); 
 
  useEffect(() => { 
    function handleStatusChange(status) { 
      setIsOnline(status.isOnline); 
    } 
 
    ChatAPI.subscribeToFriendStatus(props.friend.id, 
handleStatusChange); 
    return () => { 
      ChatAPI.unsubscribeFromFriendStatus(props.friend.id, 
handleStatusChange); 
    }; 
  }); 
 
  if (isOnline === null) { 
    return 'Loading...'; 
  } 
  return isOnline ? 'Online' : 'Offline'; 
}

Now let’s say that our chat application also has a contact list, and we want to
render names of online users with a green color. We could copy and paste
similar logic above into our FriendListItem component but it wouldn’t be
ideal:

import React, { useState, useEffect } from 'react'; 
 
function FriendListItem(props) { 
  const [isOnline, setIsOnline] = useState(null); 
 
  useEffect(() => { 
    function handleStatusChange(status) { 
      setIsOnline(status.isOnline); 
    } 
 
    ChatAPI.subscribeToFriendStatus(props.friend.id, 



handleStatusChange); 
    return () => { 
      ChatAPI.unsubscribeFromFriendStatus(props.friend.id, 
handleStatusChange); 
    }; 
  }); 
 
  return ( 
    <li style={{ color: isOnline ? 'green' : 'black' }}> 
      {props.friend.name} 
    </li> 
  ); 
}

Instead, we’d like to share this logic between FriendStatus and 
FriendListItem.

Traditionally in React, we’ve had two popular ways to share stateful logic
between components: render props and higher-order components. We will now
look at how Hooks solve many of the same problems without forcing you to add
more components to the tree.

Extracting a Custom Hook

When we want to share logic between two JavaScript functions, we extract it to
a third function. Both components and Hooks are functions, so this works for
them too!

A custom Hook is a JavaScript function whose name starts with “use” and
that may call other Hooks. For example, useFriendStatus below is our first
custom Hook:

import { useState, useEffect } from 'react'; 
 
function useFriendStatus(friendID) { 
  const [isOnline, setIsOnline] = useState(null); 
 
  useEffect(() => { 
    function handleStatusChange(status) { 
      setIsOnline(status.isOnline); 
    } 
 
    ChatAPI.subscribeToFriendStatus(friendID, handleStatusChange); 
    return () => { 
      ChatAPI.unsubscribeFromFriendStatus(friendID, 
handleStatusChange); 



    }; 
  }); 
 
  return isOnline; 
}

There’s nothing new inside of it – the logic is copied from the components
above. Just like in a component, make sure to only call other Hooks
unconditionally at the top level of your custom Hook.

Unlike a React component, a custom Hook doesn’t need to have a specific
signature. We can decide what it takes as arguments, and what, if anything, it
should return. In other words, it’s just like a normal function. Its name should
always start with use so that you can tell at a glance that the rules of Hooks
apply to it.

The purpose of our useFriendStatus Hook is to subscribe us to a friend’s
status. This is why it takes friendID as an argument, and returns whether this
friend is online:

Now let’s see how we can use our custom Hook.

Using a Custom Hook

In the beginning, our stated goal was to remove the duplicated logic from the 
FriendStatus and FriendListItem components. Both of them want to know
whether a friend is online.

Now that we’ve extracted this logic to a useFriendStatus hook, we can just use
it:

function FriendStatus(props) { 
  const isOnline = useFriendStatus(props.friend.id); 
 
  if (isOnline === null) { 

function useFriendStatus(friendID) {
 const [isOnline, setIsOnline] = useState(null);

 // ...

 return isOnline;
}



    return 'Loading...'; 
  } 
  return isOnline ? 'Online' : 'Offline'; 
}

function FriendListItem(props) { 
  const isOnline = useFriendStatus(props.friend.id); 
 
  return ( 
    <li style={{ color: isOnline ? 'green' : 'black' }}> 
      {props.friend.name} 
    </li> 
  ); 
}

Is this code equivalent to the original examples? Yes, it works in exactly the
same way. If you look closely, you’ll notice we didn’t make any changes to the
behavior. All we did was to extract some common code between two functions
into a separate function. Custom Hooks are a convention that naturally
follows from the design of Hooks, rather than a React feature.

Do I have to name my custom Hooks starting with “use”? Please do. This
convention is very important. Without it, we wouldn’t be able to automatically
check for violations of rules of Hooks because we couldn’t tell if a certain
function contains calls to Hooks inside of it.

Do two components using the same Hook share state? No. Custom Hooks are
a mechanism to reuse stateful logic (such as setting up a subscription and
remembering the current value), but every time you use a custom Hook, all state
and effects inside of it are fully isolated.

How does a custom Hook get isolated state? Each call to a Hook gets isolated
state. Because we call useFriendStatus directly, from React’s point of view our
component just calls useState and useEffect. And as we learned earlier, we
can call useState and useEffect many times in one component, and they will
be completely independent.

Tip: Pass Information Between Hooks

Since Hooks are functions, we can pass information between them.

To illustrate this, we’ll use another component from our hypothetical chat
example. This is a chat message recipient picker that displays whether the



currently selected friend is online:

const friendList = [ 
  { id: 1, name: 'Phoebe' }, 
  { id: 2, name: 'Rachel' }, 
  { id: 3, name: 'Ross' }, 
]; 
 
function ChatRecipientPicker() { 
  const [recipientID, setRecipientID] = useState(1); 
  const isRecipientOnline = useFriendStatus(recipientID); 
 
  return ( 
    <> 
      <Circle color={isRecipientOnline ? 'green' : 'red'} /> 
      <select 
        value={recipientID} 
        onChange={e => setRecipientID(Number(e.target.value))} 
      > 
        {friendList.map(friend => ( 
          <option key={friend.id} value={friend.id}> 
            {friend.name} 
          </option> 
        ))} 
      </select> 
    </> 
  ); 
}

We keep the currently chosen friend ID in the recipientID state variable, and
update it if the user chooses a different friend in the <select> picker.

Because the useState Hook call gives us the latest value of the recipientID
state variable, we can pass it to our custom useFriendStatus Hook as an
argument:

This lets us know whether the currently selected friend is online. If we pick a
different friend and update the recipientID state variable, our 
useFriendStatus Hook will unsubscribe from the previously selected friend,
and subscribe to the status of the newly selected one.

useYourImagination()

 const [recipientID, setRecipientID] = useState(1);
 const isRecipientOnline = useFriendStatus(recipientID);



Custom Hooks offer the flexibility of sharing logic that wasn’t possible in React
components before. You can write custom Hooks that cover a wide range of use
cases like form handling, animation, declarative subscriptions, timers, and
probably many more we haven’t considered. What’s more, you can build Hooks
that are just as easy to use as React’s built-in features.

Try to resist adding abstraction too early. Now that function components can do
more, it’s likely that the average function component in your codebase will
become longer. This is normal – don’t feel like you have to immediately split it
into Hooks. But we also encourage you to start spotting cases where a custom
Hook could hide complex logic behind a simple interface, or help untangle a
messy component.

For example, maybe you have a complex component that contains a lot of local
state that is managed in an ad-hoc way. useState doesn’t make centralizing the
update logic any easier so you might prefer to write it as a Redux reducer:

Reducers are very convenient to test in isolation, and scale to express complex
update logic. You can further break them apart into smaller reducers if
necessary. However, you might also enjoy the benefits of using React local state,
or might not want to install another library.

So what if we could write a useReducer Hook that lets us manage the local state
of our component with a reducer? A simplified version of it might look like this:

function todosReducer(state, action) {
 switch (action.type) {
   case 'add':
     return [...state, {
       text: action.text,
       completed: false
     }];
   // ... other actions ...
   default:
     return state;
 }
}

function useReducer(reducer, initialState) {
 const [state, setState] = useState(initialState);

 function dispatch(action) {

https://redux.js.org/


Now we could use it in our component, and let the reducer drive its state
management:

function Todos() { 
  const [todos, dispatch] = useReducer(todosReducer, []); 
 
  function handleAddClick(text) { 
    dispatch({ type: 'add', text }); 
  } 
 
  // ... 
}

The need to manage local state with a reducer in a complex component is
common enough that we’ve built the useReducer Hook right into React. You’ll
find it together with other built-in Hooks in the Hooks API reference.

Hooks API Reference

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

This page describes the APIs for the built-in Hooks in React.

If you’re new to Hooks, you might want to check out the overview first. You
may also find useful information in the frequently asked questions section.

Basic Hooks
useState

useEffect

useContext

Additional Hooks
useReducer

useCallback

useMemo

   const nextState = reducer(state, action);
   setState(nextState);
 }

 return [state, dispatch];
}



useRef

useImperativeHandle

useLayoutEffect

useDebugValue

useDeferredValue

useTransition

useId

Library Hooks
useSyncExternalStore

useInsertionEffect

Basic Hooks

useState

Returns a stateful value, and a function to update it.

During the initial render, the returned state (state) is the same as the value
passed as the first argument (initialState).

The setState function is used to update the state. It accepts a new state value
and enqueues a re-render of the component.

During subsequent re-renders, the first value returned by useState will always
be the most recent state after applying updates.

Note

React guarantees that setState function identity is stable and won’t change
on re-renders. This is why it’s safe to omit from the useEffect or 
useCallback dependency list.

Functional updates

If the new state is computed using the previous state, you can pass a function to 
setState. The function will receive the previous value, and return an updated

const [state, setState] = useState(initialState);

setState(newState);



value. Here’s an example of a counter component that uses both forms of 
setState:

The “+” and “-” buttons use the functional form, because the updated value is
based on the previous value. But the “Reset” button uses the normal form,
because it always sets the count back to the initial value.

If your update function returns the exact same value as the current state, the
subsequent rerender will be skipped completely.

Note

Unlike the setState method found in class components, useState does not
automatically merge update objects. You can replicate this behavior by
combining the function updater form with object spread syntax:

Another option is useReducer, which is more suited for managing state
objects that contain multiple sub-values.

Lazy initial state

The initialState argument is the state used during the initial render. In
subsequent renders, it is disregarded. If the initial state is the result of an

function Counter({initialCount}) {
 const [count, setCount] = useState(initialCount);
 return (
   <>
     Count: {count}
     <button onClick={() => setCount(initialCount)}>Reset</button>
     <button onClick={() => setCount(prevCount => prevCount - 1)}>-
     <button onClick={() => setCount(prevCount => prevCount + 1)}>+
   </>
 );
}

const [state, setState] = useState({});
setState(prevState => {
 // Object.assign would also work
 return {...prevState, ...updatedValues};
});



expensive computation, you may provide a function instead, which will be
executed only on the initial render:

Bailing out of a state update

If you update a State Hook to the same value as the current state, React will bail
out without rendering the children or firing effects. (React uses the Object.is
comparison algorithm.)

Note that React may still need to render that specific component again before
bailing out. That shouldn’t be a concern because React won’t unnecessarily go
“deeper” into the tree. If you’re doing expensive calculations while rendering,
you can optimize them with useMemo.

Batching of state updates

React may group several state updates into a single re-render to improve
performance. Normally, this improves performance and shouldn’t affect your
application’s behavior.

Before React 18, only updates inside React event handlers were batched.
Starting with React 18, batching is enabled for all updates by default. Note that
React makes sure that updates from several different user-initiated events – for
example, clicking a button twice – are always processed separately and do not
get batched. This prevents logical mistakes.

In the rare case that you need to force the DOM update to be applied
synchronously, you may wrap it in flushSync. However, this can hurt
performance so do this only where needed.

useEffect

Accepts a function that contains imperative, possibly effectful code.

const [state, setState] = useState(() => {
 const initialState = someExpensiveComputation(props);
 return initialState;
});

useEffect(didUpdate);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is#Description
file:///C:/blog/2022/03/08/react-18-upgrade-guide.html#automatic-batching


Mutations, subscriptions, timers, logging, and other side effects are not allowed
inside the main body of a function component (referred to as React’s render
phase). Doing so will lead to confusing bugs and inconsistencies in the UI.

Instead, use useEffect. The function passed to useEffect will run after the
render is committed to the screen. Think of effects as an escape hatch from
React’s purely functional world into the imperative world.

By default, effects run after every completed render, but you can choose to fire
them only when certain values have changed.

Cleaning up an effect

Often, effects create resources that need to be cleaned up before the component
leaves the screen, such as a subscription or timer ID. To do this, the function
passed to useEffect may return a clean-up function. For example, to create a
subscription:

The clean-up function runs before the component is removed from the UI to
prevent memory leaks. Additionally, if a component renders multiple times (as
they typically do), the previous effect is cleaned up before executing the next
effect. In our example, this means a new subscription is created on every update.
To avoid firing an effect on every update, refer to the next section.

Timing of effects

Unlike componentDidMount and componentDidUpdate, the function passed to 
useEffect fires after layout and paint, during a deferred event. This makes it
suitable for the many common side effects, like setting up subscriptions and
event handlers, because most types of work shouldn’t block the browser from
updating the screen.

useEffect(() => {
 const subscription = props.source.subscribe();
 return () => {
   // Clean up the subscription
   subscription.unsubscribe();
 };
});



However, not all effects can be deferred. For example, a DOM mutation that is
visible to the user must fire synchronously before the next paint so that the user
does not perceive a visual inconsistency. (The distinction is conceptually similar
to passive versus active event listeners.) For these types of effects, React
provides one additional Hook called useLayoutEffect. It has the same signature
as useEffect, and only differs in when it is fired.

Additionally, starting in React 18, the function passed to useEffect will fire
synchronously before layout and paint when it’s the result of a discrete user
input such as a click, or when it’s the result of an update wrapped in flushSync.
This behavior allows the result of the effect to be observed by the event system,
or by the caller of flushSync.

Note

This only affects the timing of when the function passed to useEffect is
called - updates scheduled inside these effects are still deferred. This is
different than useLayoutEffect, which fires the function and processes the
updates inside of it immediately.

Even in cases where useEffect is deferred until after the browser has painted,
it’s guaranteed to fire before any new renders. React will always flush a previous
render’s effects before starting a new update.

Conditionally firing an effect

The default behavior for effects is to fire the effect after every completed render.
That way an effect is always recreated if one of its dependencies changes.

However, this may be overkill in some cases, like the subscription example from
the previous section. We don’t need to create a new subscription on every
update, only if the source prop has changed.

To implement this, pass a second argument to useEffect that is the array of
values that the effect depends on. Our updated example now looks like this:

useEffect(
 () => {
   const subscription = props.source.subscribe();
   return () => {
     subscription.unsubscribe();



Now the subscription will only be recreated when props.source changes.

Note

If you use this optimization, make sure the array includes all values from
the component scope (such as props and state) that change over time
and that are used by the effect. Otherwise, your code will reference stale
values from previous renders. Learn more about how to deal with functions
and what to do when the array values change too often.

If you want to run an effect and clean it up only once (on mount and
unmount), you can pass an empty array ([]) as a second argument. This
tells React that your effect doesn’t depend on any values from props or
state, so it never needs to re-run. This isn’t handled as a special case – it
follows directly from how the dependencies array always works.

If you pass an empty array ([]), the props and state inside the effect will
always have their initial values. While passing [] as the second argument is
closer to the familiar componentDidMount and componentWillUnmount
mental model, there are usually better solutions to avoid re-running effects
too often. Also, don’t forget that React defers running useEffect until after
the browser has painted, so doing extra work is less of a problem.

We recommend using the exhaustive-deps rule as part of our eslint-
plugin-react-hooks package. It warns when dependencies are specified
incorrectly and suggests a fix.

The array of dependencies is not passed as arguments to the effect function.
Conceptually, though, that’s what they represent: every value referenced inside
the effect function should also appear in the dependencies array. In the future, a
sufficiently advanced compiler could create this array automatically.

useContext

   };
 },
 [props.source],
);

const value = useContext(MyContext);

https://github.com/facebook/react/issues/14920
https://www.npmjs.com/package/eslint-plugin-react-hooks#installation


Accepts a context object (the value returned from React.createContext) and
returns the current context value for that context. The current context value is
determined by the value prop of the nearest <MyContext.Provider> above the
calling component in the tree.

When the nearest <MyContext.Provider> above the component updates, this
Hook will trigger a rerender with the latest context value passed to that 
MyContext provider. Even if an ancestor uses React.memo or 
shouldComponentUpdate, a rerender will still happen starting at the component
itself using useContext.

Don’t forget that the argument to useContext must be the context object itself:

Correct: useContext(MyContext)
Incorrect: useContext(MyContext.Consumer)
Incorrect: useContext(MyContext.Provider)

A component calling useContext will always re-render when the context value
changes. If re-rendering the component is expensive, you can optimize it by
using memoization.

Tip

If you’re familiar with the context API before Hooks, 
useContext(MyContext) is equivalent to static contextType = 

MyContext in a class, or to <MyContext.Consumer>.

useContext(MyContext) only lets you read the context and subscribe to its
changes. You still need a <MyContext.Provider> above in the tree to
provide the value for this context.

Putting it together with Context.Provider

const themes = { 
  light: { 
    foreground: "#000000", 
    background: "#eeeeee" 
  }, 
  dark: { 
    foreground: "#ffffff", 
    background: "#222222" 
  } 
}; 

https://github.com/facebook/react/issues/15156#issuecomment-474590693


 
const ThemeContext = React.createContext(themes.light); 
 
function App() { 
  return ( 
    <ThemeContext.Provider value={themes.dark}> 
      <Toolbar /> 
    </ThemeContext.Provider> 
  ); 
} 
 
function Toolbar(props) { 
  return ( 
    <div> 
      <ThemedButton /> 
    </div> 
  ); 
} 
 
function ThemedButton() { 
  const theme = useContext(ThemeContext); 
 
  return ( 
    <button style={{ background: theme.background, color: 
theme.foreground }}> 
      I am styled by theme context! 
    </button> 
  ); 
}

This example is modified for hooks from a previous example in the Context
Advanced Guide, where you can find more information about when and how to
use Context.

Additional Hooks

The following Hooks are either variants of the basic ones from the previous
section, or only needed for specific edge cases. Don’t stress about learning them
up front.

useReducer

An alternative to useState. Accepts a reducer of type (state, action) => 
newState, and returns the current state paired with a dispatch method. (If

const [state, dispatch] = useReducer(reducer, initialArg, init);



you’re familiar with Redux, you already know how this works.)

useReducer is usually preferable to useState when you have complex state
logic that involves multiple sub-values or when the next state depends on the
previous one. useReducer also lets you optimize performance for components
that trigger deep updates because you can pass dispatch down instead of
callbacks.

Here’s the counter example from the useState section, rewritten to use a
reducer:

Note

React guarantees that dispatch function identity is stable and won’t change
on re-renders. This is why it’s safe to omit from the useEffect or 
useCallback dependency list.

Specifying the initial state

const initialState = {count: 0};

function reducer(state, action) {
 switch (action.type) {
   case 'increment':
     return {count: state.count + 1};
   case 'decrement':
     return {count: state.count - 1};
   default:
     throw new Error();
 }
}

function Counter() {
 const [state, dispatch] = useReducer(reducer, initialState);
 return (
   <>
     Count: {state.count}
     <button onClick={() => dispatch({type: 'decrement'})}>-</butto
     <button onClick={() => dispatch({type: 'increment'})}>+</butto
   </>
 );
}



There are two different ways to initialize useReducer state. You may choose
either one depending on the use case. The simplest way is to pass the initial state
as a second argument:

  const [state, dispatch] = useReducer( 
    reducer, 
    {count: initialCount} 
  );

Note

React doesn’t use the state = initialState argument convention
popularized by Redux. The initial value sometimes needs to depend on
props and so is specified from the Hook call instead. If you feel strongly
about this, you can call useReducer(reducer, undefined, reducer) to
emulate the Redux behavior, but it’s not encouraged.

Lazy initialization

You can also create the initial state lazily. To do this, you can pass an init
function as the third argument. The initial state will be set to init(initialArg).

It lets you extract the logic for calculating the initial state outside the reducer.
This is also handy for resetting the state later in response to an action:

function init(initialCount) { 
  return {count: initialCount}; 
} 
 
function reducer(state, action) { 
  switch (action.type) { 
    case 'increment': 
      return {count: state.count + 1}; 
    case 'decrement': 
      return {count: state.count - 1}; 
    case 'reset': 
      return init(action.payload); 
    default: 
      throw new Error(); 
  } 
} 
 
function Counter({initialCount}) { 
  const [state, dispatch] = useReducer(reducer, initialCount, 
init); 



  return ( 
    <> 
      Count: {state.count} 
      <button 
        onClick={() => dispatch({type: 'reset', payload: 
initialCount})}> 
        Reset 
      </button> 
      <button onClick={() => dispatch({type: 'decrement'})}>-
</button> 
      <button onClick={() => dispatch({type: 'increment'})}>+
</button> 
    </> 
  ); 
}

Bailing out of a dispatch

If you return the same value from a Reducer Hook as the current state, React
will bail out without rendering the children or firing effects. (React uses the 
Object.is comparison algorithm.)

Note that React may still need to render that specific component again before
bailing out. That shouldn’t be a concern because React won’t unnecessarily go
“deeper” into the tree. If you’re doing expensive calculations while rendering,
you can optimize them with useMemo.

useCallback

Returns a memoized callback.

Pass an inline callback and an array of dependencies. useCallback will return a
memoized version of the callback that only changes if one of the dependencies
has changed. This is useful when passing callbacks to optimized child
components that rely on reference equality to prevent unnecessary renders
(e.g. shouldComponentUpdate).

const memoizedCallback = useCallback(
 () => {
   doSomething(a, b);
 },
 [a, b],
);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is#Description
https://en.wikipedia.org/wiki/Memoization


useCallback(fn, deps) is equivalent to useMemo(() => fn, deps).

Note

The array of dependencies is not passed as arguments to the callback.
Conceptually, though, that’s what they represent: every value referenced
inside the callback should also appear in the dependencies array. In the
future, a sufficiently advanced compiler could create this array
automatically.

We recommend using the exhaustive-deps rule as part of our eslint-
plugin-react-hooks package. It warns when dependencies are specified
incorrectly and suggests a fix.

useMemo

Returns a memoized value.

Pass a “create” function and an array of dependencies. useMemo will only
recompute the memoized value when one of the dependencies has changed. This
optimization helps to avoid expensive calculations on every render.

Remember that the function passed to useMemo runs during rendering. Don’t do
anything there that you wouldn’t normally do while rendering. For example,
side effects belong in useEffect, not useMemo.

If no array is provided, a new value will be computed on every render.

You may rely on useMemo as a performance optimization, not as a semantic
guarantee. In the future, React may choose to “forget” some previously
memoized values and recalculate them on next render, e.g. to free memory for
offscreen components. Write your code so that it still works without useMemo —
and then add it to optimize performance.

Note

The array of dependencies is not passed as arguments to the function.
Conceptually, though, that’s what they represent: every value referenced

const memoizedValue = useMemo(() => computeExpensiveValue(a, b), [a,

https://github.com/facebook/react/issues/14920
https://www.npmjs.com/package/eslint-plugin-react-hooks#installation
https://en.wikipedia.org/wiki/Memoization


inside the function should also appear in the dependencies array. In the
future, a sufficiently advanced compiler could create this array
automatically.

We recommend using the exhaustive-deps rule as part of our eslint-
plugin-react-hooks package. It warns when dependencies are specified
incorrectly and suggests a fix.

useRef

useRef returns a mutable ref object whose .current property is initialized to the
passed argument (initialValue). The returned object will persist for the full
lifetime of the component.

A common use case is to access a child imperatively:

Essentially, useRef is like a “box” that can hold a mutable value in its .current
property.

You might be familiar with refs primarily as a way to access the DOM. If you
pass a ref object to React with <div ref={myRef} />, React will set its 
.current property to the corresponding DOM node whenever that node
changes.

However, useRef() is useful for more than the ref attribute. It’s handy for
keeping any mutable value around similar to how you’d use instance fields in

const refContainer = useRef(initialValue);

function TextInputWithFocusButton() {
 const inputEl = useRef(null);
 const onButtonClick = () => {
   // `current` points to the mounted text input element
   inputEl.current.focus();
 };
 return (
   <>
     <input ref={inputEl} type="text" />
     <button onClick={onButtonClick}>Focus the input</button>
   </>
 );
}

https://github.com/facebook/react/issues/14920
https://www.npmjs.com/package/eslint-plugin-react-hooks#installation


classes.

This works because useRef() creates a plain JavaScript object. The only
difference between useRef() and creating a {current: ...} object yourself is
that useRef will give you the same ref object on every render.

Keep in mind that useRef doesn’t notify you when its content changes. Mutating
the .current property doesn’t cause a re-render. If you want to run some code
when React attaches or detaches a ref to a DOM node, you may want to use a
callback ref instead.

useImperativeHandle

useImperativeHandle customizes the instance value that is exposed to parent
components when using ref. As always, imperative code using refs should be
avoided in most cases. useImperativeHandle should be used with forwardRef:

In this example, a parent component that renders <FancyInput ref={inputRef} 
/> would be able to call inputRef.current.focus().

useLayoutEffect

The signature is identical to useEffect, but it fires synchronously after all DOM
mutations. Use this to read layout from the DOM and synchronously re-render.
Updates scheduled inside useLayoutEffect will be flushed synchronously,
before the browser has a chance to paint.

Prefer the standard useEffect when possible to avoid blocking visual updates.

useImperativeHandle(ref, createHandle, [deps])

function FancyInput(props, ref) {
 const inputRef = useRef();
 useImperativeHandle(ref, () => ({
   focus: () => {
     inputRef.current.focus();
   }
 }));
 return <input ref={inputRef} ... />;
}
FancyInput = forwardRef(FancyInput);



Tip

If you’re migrating code from a class component, note useLayoutEffect
fires in the same phase as componentDidMount and componentDidUpdate.
However, we recommend starting with useEffect first and only trying 
useLayoutEffect if that causes a problem.

If you use server rendering, keep in mind that neither useLayoutEffect nor
useEffect can run until the JavaScript is downloaded. This is why React
warns when a server-rendered component contains useLayoutEffect. To
fix this, either move that logic to useEffect (if it isn’t necessary for the
first render), or delay showing that component until after the client renders
(if the HTML looks broken until useLayoutEffect runs).

To exclude a component that needs layout effects from the server-rendered
HTML, render it conditionally with showChild && <Child /> and defer
showing it with useEffect(() => { setShowChild(true); }, []). This
way, the UI doesn’t appear broken before hydration.

useDebugValue

useDebugValue can be used to display a label for custom hooks in React
DevTools.

For example, consider the useFriendStatus custom Hook described in
“Building Your Own Hooks”:

function useFriendStatus(friendID) { 
  const [isOnline, setIsOnline] = useState(null); 
 
  // ... 
 
  // Show a label in DevTools next to this Hook 
  // e.g. "FriendStatus: Online" 
  useDebugValue(isOnline ? 'Online' : 'Offline'); 
 
  return isOnline; 
}

Tip

useDebugValue(value)



We don’t recommend adding debug values to every custom Hook. It’s most
valuable for custom Hooks that are part of shared libraries.

Defer formatting debug values

In some cases formatting a value for display might be an expensive operation.
It’s also unnecessary unless a Hook is actually inspected.

For this reason useDebugValue accepts a formatting function as an optional
second parameter. This function is only called if the Hooks are inspected. It
receives the debug value as a parameter and should return a formatted display
value.

For example a custom Hook that returned a Date value could avoid calling the 
toDateString function unnecessarily by passing the following formatter:

useDeferredValue

useDeferredValue accepts a value and returns a new copy of the value that will
defer to more urgent updates. If the current render is the result of an urgent
update, like user input, React will return the previous value and then render the
new value after the urgent render has completed.

This hook is similar to user-space hooks which use debouncing or throttling to
defer updates. The benefits to using useDeferredValue is that React will work
on the update as soon as other work finishes (instead of waiting for an arbitrary
amount of time), and like startTransition, deferred values can suspend
without triggering an unexpected fallback for existing content.

Memoizing deferred children

useDeferredValue only defers the value that you pass to it. If you want to
prevent a child component from re-rendering during an urgent update, you must
also memoize that component with React.memo or React.useMemo:

useDebugValue(date, date => date.toDateString());

const deferredValue = useDeferredValue(value);



Memoizing the children tells React that it only needs to re-render them when 
deferredQuery changes and not when query changes. This caveat is not unique
to useDeferredValue, and it’s the same pattern you would use with similar
hooks that use debouncing or throttling.

useTransition

Returns a stateful value for the pending state of the transition, and a function to
start it.

startTransition lets you mark updates in the provided callback as transitions:

isPending indicates when a transition is active to show a pending state:

function Typeahead() {
 const query = useSearchQuery('');
 const deferredQuery = useDeferredValue(query);

 // Memoizing tells React to only re-render when deferredQuery chan
 // not when query changes.
 const suggestions = useMemo(() =>
   <SearchSuggestions query={deferredQuery} />,
   [deferredQuery]
 );

 return (
   <>
     <SearchInput query={query} />
     <Suspense fallback="Loading results...">
       {suggestions}
     </Suspense>
   </>
 );
}

const [isPending, startTransition] = useTransition();

startTransition(() => {
 setCount(count + 1);
})



Note:

Updates in a transition yield to more urgent updates such as clicks.

Updates in a transition will not show a fallback for re-suspended content.
This allows the user to continue interacting with the current content while
rendering the update.

useId

useId is a hook for generating unique IDs that are stable across the server and
client, while avoiding hydration mismatches.

Note

useId is not for generating keys in a list. Keys should be generated from
your data.

For a basic example, pass the id directly to the elements that need it:

function App() {
 const [isPending, startTransition] = useTransition();
 const [count, setCount] = useState(0);
 
 function handleClick() {
   startTransition(() => {
     setCount(c => c + 1);
   })
 }

 return (
   <div>
     {isPending && <Spinner />}
     <button onClick={handleClick}>{count}</button>
   </div>
 );
}

const id = useId();

function Checkbox() {
 const id = useId();
 return (



For multiple IDs in the same component, append a suffix using the same id:

Note:

useId generates a string that includes the : token. This helps ensure that the
token is unique, but is not supported in CSS selectors or APIs like 
querySelectorAll.

useId supports an identifierPrefix to prevent collisions in multi-root
apps. To configure, see the options for hydrateRoot and ReactDOMServer.

Library Hooks

The following Hooks are provided for library authors to integrate libraries
deeply into the React model, and are not typically used in application code.

useSyncExternalStore

   <>
     <label htmlFor={id}>Do you like React?</label>
     <input id={id} type="checkbox" name="react"/>
   </>
 );
};

function NameFields() {
 const id = useId();
 return (
   <div>
     <label htmlFor={id + '-firstName'}>First Name</label>
     <div>
       <input id={id + '-firstName'} type="text" />
     </div>
     <label htmlFor={id + '-lastName'}>Last Name</label>
     <div>
       <input id={id + '-lastName'} type="text" />
     </div>
   </div>
 );
}

const state = useSyncExternalStore(subscribe, getSnapshot[, getServe



useSyncExternalStore is a hook recommended for reading and subscribing
from external data sources in a way that’s compatible with concurrent rendering
features like selective hydration and time slicing.

This method returns the value of the store and accepts three arguments: - 
subscribe: function to register a callback that is called whenever the store
changes. - getSnapshot: function that returns the current value of the store. - 
getServerSnapshot: function that returns the snapshot used during server
rendering.

The most basic example simply subscribes to the entire store:

However, you can also subscribe to a specific field:

When server rendering, you must serialize the store value used on the server,
and provide it to useSyncExternalStore. React will use this snapshot during
hydration to prevent server mismatches:

Note:

getSnapshot must return a cached value. If getSnapshot is called multiple
times in a row, it must return the same exact value unless there was a store
update in between.

A shim is provided for supporting multiple React versions published as 
use-sync-external-store/shim. This shim will prefer 
useSyncExternalStore when available, and fallback to a user-space
implementation when it’s not.

const state = useSyncExternalStore(store.subscribe, store.getSnapsho

const selectedField = useSyncExternalStore(
 store.subscribe,
 () => store.getSnapshot().selectedField,
);

const selectedField = useSyncExternalStore(
 store.subscribe,
 () => store.getSnapshot().selectedField,
 () => INITIAL_SERVER_SNAPSHOT.selectedField,
);



As a convenience, we also provide a version of the API with automatic
support for memoizing the result of getSnapshot published as use-sync-
external-store/with-selector.

useInsertionEffect

The signature is identical to useEffect, but it fires synchronously before all
DOM mutations. Use this to inject styles into the DOM before reading layout in 
useLayoutEffect. Since this hook is limited in scope, this hook does not have
access to refs and cannot schedule updates.

Note:

useInsertionEffect should be limited to css-in-js library authors. Prefer 
useEffect or useLayoutEffect instead.

Hooks FAQ

Hooks are a new addition in React 16.8. They let you use state and other React
features without writing a class.

This page answers some of the frequently asked questions about Hooks.

Adoption Strategy
Which versions of React include Hooks?
Do I need to rewrite all my class components?
What can I do with Hooks that I couldn’t with classes?
How much of my React knowledge stays relevant?
Should I use Hooks, classes, or a mix of both?
Do Hooks cover all use cases for classes?
Do Hooks replace render props and higher-order components?
What do Hooks mean for popular APIs like Redux connect() and
React Router?
Do Hooks work with static typing?
How to test components that use Hooks?
What exactly do the lint rules enforce?

From Classes to Hooks

useInsertionEffect(didUpdate);



How do lifecycle methods correspond to Hooks?
How can I do data fetching with Hooks?
Is there something like instance variables?
Should I use one or many state variables?
Can I run an effect only on updates?
How to get the previous props or state?
Why am I seeing stale props or state inside my function?
How do I implement getDerivedStateFromProps?
Is there something like forceUpdate?
Can I make a ref to a function component?
How can I measure a DOM node?
What does const [thing, setThing] = useState() mean?

Performance Optimizations
Can I skip an effect on updates?
Is it safe to omit functions from the list of dependencies?
What can I do if my effect dependencies change too often?
How do I implement shouldComponentUpdate?
How to memoize calculations?
How to create expensive objects lazily?
Are Hooks slow because of creating functions in render?
How to avoid passing callbacks down?
How to read an often-changing value from useCallback?

Under the Hood
How does React associate Hook calls with components?
What is the prior art for Hooks?

Adoption Strategy

Which versions of React include Hooks?

Starting with 16.8.0, React includes a stable implementation of React Hooks for:

React DOM
React Native
React DOM Server
React Test Renderer
React Shallow Renderer



Note that to enable Hooks, all React packages need to be 16.8.0 or higher.
Hooks won’t work if you forget to update, for example, React DOM.

React Native 0.59 and above support Hooks.

Do I need to rewrite all my class components?

No. There are no plans to remove classes from React – we all need to keep
shipping products and can’t afford rewrites. We recommend trying Hooks in
new code.

What can I do with Hooks that I couldn’t with classes?

Hooks offer a powerful and expressive new way to reuse functionality between
components. “Building Your Own Hooks” provides a glimpse of what’s
possible. This article by a React core team member dives deeper into the new
capabilities unlocked by Hooks.

How much of my React knowledge stays relevant?

Hooks are a more direct way to use the React features you already know – such
as state, lifecycle, context, and refs. They don’t fundamentally change how
React works, and your knowledge of components, props, and top-down data
flow is just as relevant.

Hooks do have a learning curve of their own. If there’s something missing in
this documentation, raise an issue and we’ll try to help.

Should I use Hooks, classes, or a mix of both?

When you’re ready, we’d encourage you to start trying Hooks in new
components you write. Make sure everyone on your team is on board with using
them and familiar with this documentation. We don’t recommend rewriting your
existing classes to Hooks unless you planned to rewrite them anyway (e.g. to fix
bugs).

You can’t use Hooks inside a class component, but you can definitely mix
classes and function components with Hooks in a single tree. Whether a

https://reactnative.dev/blog/2019/03/12/releasing-react-native-059
https://medium.com/@dan_abramov/making-sense-of-react-hooks-fdbde8803889
https://github.com/reactjs/reactjs.org/issues/new


component is a class or a function that uses Hooks is an implementation detail of
that component. In the longer term, we expect Hooks to be the primary way
people write React components.

Do Hooks cover all use cases for classes?

Our goal is for Hooks to cover all use cases for classes as soon as possible.
There are no Hook equivalents to the uncommon getSnapshotBeforeUpdate, 
getDerivedStateFromError and componentDidCatch lifecycles yet, but we plan
to add them soon.

Do Hooks replace render props and higher-order components?

Often, render props and higher-order components render only a single child. We
think Hooks are a simpler way to serve this use case. There is still a place for
both patterns (for example, a virtual scroller component might have a 
renderItem prop, or a visual container component might have its own DOM
structure). But in most cases, Hooks will be sufficient and can help reduce
nesting in your tree.

What do Hooks mean for popular APIs like Redux connect() and React
Router?

You can continue to use the exact same APIs as you always have; they’ll
continue to work.

React Redux since v7.1.0 supports Hooks API and exposes hooks like 
useDispatch or useSelector.

React Router supports hooks since v5.1.

Other libraries might support hooks in the future too.

Do Hooks work with static typing?

Hooks were designed with static typing in mind. Because they’re functions, they
are easier to type correctly than patterns like higher-order components. The
latest Flow and TypeScript React definitions include support for React Hooks.

https://react-redux.js.org/api/hooks
https://reacttraining.com/react-router/web/api/Hooks


Importantly, custom Hooks give you the power to constrain React API if you’d
like to type them more strictly in some way. React gives you the primitives, but
you can combine them in different ways than what we provide out of the box.

How to test components that use Hooks?

From React’s point of view, a component using Hooks is just a regular
component. If your testing solution doesn’t rely on React internals, testing
components with Hooks shouldn’t be different from how you normally test
components.

Note

Testing Recipes include many examples that you can copy and paste.

For example, let’s say we have this counter component:

We’ll test it using React DOM. To make sure that the behavior matches what
happens in the browser, we’ll wrap the code rendering and updating it into 
ReactTestUtils.act() calls:

import React from 'react'; 
import ReactDOM from 'react-dom/client'; 
import { act } from 'react-dom/test-utils'; 
import Counter from './Counter'; 
 
let container; 
 

function Example() {
 const [count, setCount] = useState(0);
 useEffect(() => {
   document.title = `You clicked ${count} times`;
 });
 return (
   <div>
     <p>You clicked {count} times</p>
     <button onClick={() => setCount(count + 1)}>
       Click me
     </button>
   </div>
 );
}



beforeEach(() => { 
  container = document.createElement('div'); 
  document.body.appendChild(container); 
}); 
 
afterEach(() => { 
  document.body.removeChild(container); 
  container = null; 
}); 
 
it('can render and update a counter', () => { 
  // Test first render and effect 
  act(() => { 
    ReactDOM.createRoot(container).render(<Counter />); 
  }); 
  const button = container.querySelector('button'); 
  const label = container.querySelector('p'); 
  expect(label.textContent).toBe('You clicked 0 times'); 
  expect(document.title).toBe('You clicked 0 times'); 
 
  // Test second render and effect 
  act(() => { 
    button.dispatchEvent(new MouseEvent('click', {bubbles: true})); 
  }); 
  expect(label.textContent).toBe('You clicked 1 times'); 
  expect(document.title).toBe('You clicked 1 times'); 
});

The calls to act() will also flush the effects inside of them.

If you need to test a custom Hook, you can do so by creating a component in
your test, and using your Hook from it. Then you can test the component you
wrote.

To reduce the boilerplate, we recommend using React Testing Library which is
designed to encourage writing tests that use your components as the end users
do.

For more information, check out Testing Recipes.

What exactly do the lint rules enforce?

We provide an ESLint plugin that enforces rules of Hooks to avoid bugs. It
assumes that any function starting with “use” and a capital letter right after it is
a Hook. We recognize this heuristic isn’t perfect and there may be some false

https://testing-library.com/react
https://www.npmjs.com/package/eslint-plugin-react-hooks
https://www.npmjs.com/package/eslint-plugin-react-hooks


positives, but without an ecosystem-wide convention there is just no way to
make Hooks work well – and longer names will discourage people from either
adopting Hooks or following the convention.

In particular, the rule enforces that:

Calls to Hooks are either inside a PascalCase function (assumed to be a
component) or another useSomething function (assumed to be a custom
Hook).
Hooks are called in the same order on every render.

There are a few more heuristics, and they might change over time as we fine-
tune the rule to balance finding bugs with avoiding false positives.

From Classes to Hooks

How do lifecycle methods correspond to Hooks?

constructor: Function components don’t need a constructor. You can
initialize the state in the useState call. If computing the initial state is
expensive, you can pass a function to useState.

getDerivedStateFromProps: Schedule an update while rendering instead.

shouldComponentUpdate: See React.memo below.

render: This is the function component body itself.

componentDidMount, componentDidUpdate, componentWillUnmount: The 
useEffect Hook can express all combinations of these (including less
common cases).

getSnapshotBeforeUpdate, componentDidCatch and 
getDerivedStateFromError: There are no Hook equivalents for these
methods yet, but they will be added soon.

How can I do data fetching with Hooks?

Here is a small demo to get you started. To learn more, check out this article
about data fetching with Hooks.

https://codesandbox.io/s/jvvkoo8pq3
https://www.robinwieruch.de/react-hooks-fetch-data/


Is there something like instance variables?

Yes! The useRef() Hook isn’t just for DOM refs. The “ref” object is a generic
container whose current property is mutable and can hold any value, similar to
an instance property on a class.

You can write to it from inside useEffect:

function Timer() { 
  const intervalRef = useRef(); 
 
  useEffect(() => { 
    const id = setInterval(() => { 
      // ... 
    }); 
    intervalRef.current = id; 
    return () => { 
      clearInterval(intervalRef.current); 
    }; 
  }); 
 
  // ... 
}

If we just wanted to set an interval, we wouldn’t need the ref (id could be local
to the effect), but it’s useful if we want to clear the interval from an event
handler:

  // ... 
  function handleCancelClick() { 
    clearInterval(intervalRef.current); 
  } 
  // ...

Conceptually, you can think of refs as similar to instance variables in a class.
Unless you’re doing lazy initialization, avoid setting refs during rendering – this
can lead to surprising behavior. Instead, typically you want to modify refs in
event handlers and effects.

Should I use one or many state variables?

If you’re coming from classes, you might be tempted to always call useState()
once and put all state into a single object. You can do it if you’d like. Here is an



example of a component that follows the mouse movement. We keep its position
and size in the local state:

Now let’s say we want to write some logic that changes left and top when the
user moves their mouse. Note how we have to merge these fields into the
previous state object manually:

  // ... 
  useEffect(() => { 
    function handleWindowMouseMove(e) { 
      // Spreading "...state" ensures we don't "lose" width and 
height 
      setState(state => ({ ...state, left: e.pageX, top: e.pageY 
})); 
    } 
    // Note: this implementation is a bit simplified 
    window.addEventListener('mousemove', handleWindowMouseMove); 
    return () => window.removeEventListener('mousemove', 
handleWindowMouseMove); 
  }, []); 
  // ...

This is because when we update a state variable, we replace its value. This is
different from this.setState in a class, which merges the updated fields into
the object.

If you miss automatic merging, you could write a custom useLegacyState Hook
that merges object state updates. However, we recommend to split state into
multiple state variables based on which values tend to change together.

For example, we could split our component state into position and size
objects, and always replace the position with no need for merging:

function Box() { 
  const [position, setPosition] = useState({ left: 0, top: 0 }); 
  const [size, setSize] = useState({ width: 100, height: 100 }); 
 
  useEffect(() => { 
    function handleWindowMouseMove(e) { 
      setPosition({ left: e.pageX, top: e.pageY }); 

function Box() {
 const [state, setState] = useState({ left: 0, top: 0, width: 100, 
 // ...
}



    } 
    // ...

Separating independent state variables also has another benefit. It makes it easy
to later extract some related logic into a custom Hook, for example:

function Box() { 
  const position = useWindowPosition(); 
  const [size, setSize] = useState({ width: 100, height: 100 }); 
  // ... 
} 
 
function useWindowPosition() { 
  const [position, setPosition] = useState({ left: 0, top: 0 }); 
  useEffect(() => { 
    // ... 
  }, []); 
  return position; 
}

Note how we were able to move the useState call for the position state
variable and the related effect into a custom Hook without changing their code.
If all state was in a single object, extracting it would be more difficult.

Both putting all state in a single useState call, and having a useState call per
each field can work. Components tend to be most readable when you find a
balance between these two extremes, and group related state into a few
independent state variables. If the state logic becomes complex, we recommend
managing it with a reducer or a custom Hook.

Can I run an effect only on updates?

This is a rare use case. If you need it, you can use a mutable ref to manually
store a boolean value corresponding to whether you are on the first or a
subsequent render, then check that flag in your effect. (If you find yourself doing
this often, you could create a custom Hook for it.)

How to get the previous props or state?

There are two cases in which you might want to get previous props or state.

Sometimes, you need previous props to clean up an effect. For example, you
might have an effect that subscribes to a socket based on the userId prop. If the 



userId prop changes, you want to unsubscribe from the previous userId and
subscribe to the next one. You don’t need to do anything special for this to work:

In the above example, if userId changes from 3 to 4, 
ChatAPI.unsubscribeFromSocket(3) will run first, and then 
ChatAPI.subscribeToSocket(4) will run. There is no need to get “previous” 
userId because the cleanup function will capture it in a closure.

Other times, you might need to adjust state based on a change in props or
other state. This is rarely needed and is usually a sign you have some duplicate
or redundant state. However, in the rare case that you need this pattern, you can
store previous state or props in state and update them during rendering.

We have previously suggested a custom Hook called usePrevious to hold the
previous value. However, we’ve found that most use cases fall into the two
patterns described above. If your use case is different, you can hold a value in a
ref and manually update it when needed. Avoid reading and updating refs during
rendering because this makes your component’s behavior difficult to predict and
understand.

Why am I seeing stale props or state inside my function?

Any function inside a component, including event handlers and effects, “sees”
the props and state from the render it was created in. For example, consider code
like this:

useEffect(() => {
 ChatAPI.subscribeToSocket(props.userId);
 return () => ChatAPI.unsubscribeFromSocket(props.userId);
}, [props.userId]);

function Example() {
 const [count, setCount] = useState(0);

 function handleAlertClick() {
   setTimeout(() => {
     alert('You clicked on: ' + count);
   }, 3000);
 }

 return (



If you first click “Show alert” and then increment the counter, the alert will
show the count variable at the time you clicked the “Show alert” button. This
prevents bugs caused by the code assuming props and state don’t change.

If you intentionally want to read the latest state from some asynchronous
callback, you could keep it in a ref, mutate it, and read from it.

Finally, another possible reason you’re seeing stale props or state is if you use
the “dependency array” optimization but didn’t correctly specify all the
dependencies. For example, if an effect specifies [] as the second argument but
reads someProp inside, it will keep “seeing” the initial value of someProp. The
solution is to either remove the dependency array, or to fix it. Here’s how you
can deal with functions, and here’s other common strategies to run effects less
often without incorrectly skipping dependencies.

Note

We provide an exhaustive-deps ESLint rule as a part of the eslint-
plugin-react-hooks package. It warns when dependencies are specified
incorrectly and suggests a fix.

How do I implement getDerivedStateFromProps?

While you probably don’t need it, in rare cases that you do (such as
implementing a <Transition> component), you can update the state right
during rendering. React will re-run the component with updated state
immediately after exiting the first render so it wouldn’t be expensive.

   <div>
     <p>You clicked {count} times</p>
     <button onClick={() => setCount(count + 1)}>
       Click me
     </button>
     <button onClick={handleAlertClick}>
       Show alert
     </button>
   </div>
 );
}

https://github.com/facebook/react/issues/14920
https://www.npmjs.com/package/eslint-plugin-react-hooks#installation
file:///C:/blog/2018/06/07/you-probably-dont-need-derived-state.html


Here, we store the previous value of the row prop in a state variable so that we
can compare:

This might look strange at first, but an update during rendering is exactly what 
getDerivedStateFromProps has always been like conceptually.

Is there something like forceUpdate?

Both useState and useReducer Hooks bail out of updates if the next value is
the same as the previous one. Mutating state in place and calling setState will
not cause a re-render.

Normally, you shouldn’t mutate local state in React. However, as an escape
hatch, you can use an incrementing counter to force a re-render even if the state
has not changed:

Try to avoid this pattern if possible.

Can I make a ref to a function component?

While you shouldn’t need this often, you may expose some imperative methods
to a parent component with the useImperativeHandle Hook.

function ScrollView({row}) {
 const [isScrollingDown, setIsScrollingDown] = useState(false);
 const [prevRow, setPrevRow] = useState(null);

 if (row !== prevRow) {
   // Row changed since last render. Update isScrollingDown.
   setIsScrollingDown(prevRow !== null && row > prevRow);
   setPrevRow(row);
 }

 return `Scrolling down: ${isScrollingDown}`;
}

 const [ignored, forceUpdate] = useReducer(x => x + 1, 0);

 function handleClick() {
   forceUpdate();
 }



How can I measure a DOM node?

One rudimentary way to measure the position or size of a DOM node is to use a
callback ref. React will call that callback whenever the ref gets attached to a
different node. Here is a small demo:

function MeasureExample() { 
  const [height, setHeight] = useState(0); 
 
  const measuredRef = useCallback(node => { 
    if (node !== null) { 
      setHeight(node.getBoundingClientRect().height); 
    } 
  }, []); 
 
  return ( 
    <> 
      <h1 ref={measuredRef}>Hello, world</h1> 
      <h2>The above header is {Math.round(height)}px tall</h2> 
    </> 
  ); 
}

We didn’t choose useRef in this example because an object ref doesn’t notify us
about changes to the current ref value. Using a callback ref ensures that even if a
child component displays the measured node later (e.g. in response to a click),
we still get notified about it in the parent component and can update the
measurements.

Note that we pass [] as a dependency array to useCallback. This ensures that
our ref callback doesn’t change between the re-renders, and so React won’t call
it unnecessarily.

In this example, the callback ref will be called only when the component mounts
and unmounts, since the rendered <h1> component stays present throughout any
rerenders. If you want to be notified any time a component resizes, you may
want to use ResizeObserver or a third-party Hook built on it.

If you want, you can extract this logic into a reusable Hook:

function MeasureExample() { 
  const [rect, ref] = useClientRect(); 
  return ( 
    <> 

https://codesandbox.io/s/l7m0v5x4v9
https://codesandbox.io/s/818zzk8m78
https://developer.mozilla.org/en-US/docs/Web/API/ResizeObserver
https://codesandbox.io/s/m5o42082xy


      <h1 ref={ref}>Hello, world</h1> 
      {rect !== null && 
        <h2>The above header is {Math.round(rect.height)}px 
tall</h2> 
      } 
    </> 
  ); 
} 
 
function useClientRect() { 
  const [rect, setRect] = useState(null); 
  const ref = useCallback(node => { 
    if (node !== null) { 
      setRect(node.getBoundingClientRect()); 
    } 
  }, []); 
  return [rect, ref]; 
}

What does const [thing, setThing] = useState() mean?

If you’re not familiar with this syntax, check out the explanation in the State
Hook documentation.

Performance Optimizations

Can I skip an effect on updates?

Yes. See conditionally firing an effect. Note that forgetting to handle updates
often introduces bugs, which is why this isn’t the default behavior.

Is it safe to omit functions from the list of dependencies?

Generally speaking, no.

function Example({ someProp }) { 
  function doSomething() { 
    console.log(someProp); 
  } 
 
  useEffect(() => { 
    doSomething(); 
  }, []); // 🔴 This is not safe (it calls `doSomething` which uses 



`someProp`) 
}

It’s difficult to remember which props or state are used by functions outside of
the effect. This is why usually you’ll want to declare functions needed by an
effect inside of it. Then it’s easy to see what values from the component scope
that effect depends on:

function Example({ someProp }) { 
  useEffect(() => { 
    function doSomething() { 
      console.log(someProp); 
    } 
 
    doSomething(); 
  }, [someProp]); // ✅ OK (our effect only uses `someProp`) 
}

If after that we still don’t use any values from the component scope, it’s safe to
specify []:

useEffect(() => { 
  function doSomething() { 
    console.log('hello'); 
  } 
 
  doSomething(); 
}, []); // ✅ OK in this example because we don't use *any* values 
from component scope

Depending on your use case, there are a few more options described below.

Note

We provide the exhaustive-deps ESLint rule as a part of the eslint-
plugin-react-hooks package. It helps you find components that don’t
handle updates consistently.

Let’s see why this matters.

If you specify a list of dependencies as the last argument to useEffect, 
useLayoutEffect, useMemo, useCallback, or useImperativeHandle, it must
include all values that are used inside the callback and participate in the React
data flow. That includes props, state, and anything derived from them.

https://github.com/facebook/react/issues/14920
https://www.npmjs.com/package/eslint-plugin-react-hooks#installation


It is only safe to omit a function from the dependency list if nothing in it (or the
functions called by it) references props, state, or values derived from them. This
example has a bug:

function ProductPage({ productId }) { 
  const [product, setProduct] = useState(null); 
 
  async function fetchProduct() { 
    const response = await fetch('http://myapi/product/' + 
productId); // Uses productId prop 
    const json = await response.json(); 
    setProduct(json); 
  } 
 
  useEffect(() => { 
    fetchProduct(); 
  }, []); // 🔴 Invalid because `fetchProduct` uses `productId` 
  // ... 
}

The recommended fix is to move that function inside of your effect. That
makes it easy to see which props or state your effect uses, and to ensure they’re
all declared:

function ProductPage({ productId }) { 
  const [product, setProduct] = useState(null); 
 
  useEffect(() => { 
    // By moving this function inside the effect, we can clearly 
see the values it uses. 
    async function fetchProduct() { 
      const response = await fetch('http://myapi/product/' + 
productId); 
      const json = await response.json(); 
      setProduct(json); 
    } 
 
    fetchProduct(); 
  }, [productId]); // ✅  Valid because our effect only uses 
productId 
  // ... 
}

This also allows you to handle out-of-order responses with a local variable
inside the effect:



  useEffect(() => { 
    let ignore = false; 
    async function fetchProduct() { 
      const response = await fetch('http://myapi/product/' + 
productId); 
      const json = await response.json(); 
      if (!ignore) setProduct(json); 
    } 
 
    fetchProduct(); 
    return () => { ignore = true }; 
  }, [productId]);

We moved the function inside the effect so it doesn’t need to be in its
dependency list.

Tip

Check out this small demo and this article to learn more about data fetching
with Hooks.

If for some reason you can’t move a function inside an effect, there are a
few more options:

You can try moving that function outside of your component. In that
case, the function is guaranteed to not reference any props or state, and also
doesn’t need to be in the list of dependencies.
If the function you’re calling is a pure computation and is safe to call while
rendering, you may call it outside of the effect instead, and make the
effect depend on the returned value.
As a last resort, you can add a function to effect dependencies but wrap
its definition into the useCallback Hook. This ensures it doesn’t change on
every render unless its own dependencies also change:

function ProductPage({ productId }) { 
  // ✅ Wrap with useCallback to avoid change on every render 
  const fetchProduct = useCallback(() => { 
    // ... Does something with productId ... 
  }, [productId]); // ✅ All useCallback dependencies are specified 
 
  return <ProductDetails fetchProduct={fetchProduct} />; 
} 
 
function ProductDetails({ fetchProduct }) { 
  useEffect(() => { 

https://codesandbox.io/s/jvvkoo8pq3
https://www.robinwieruch.de/react-hooks-fetch-data/


    fetchProduct(); 
  }, [fetchProduct]); // ✅  All useEffect dependencies are 
specified 
  // ... 
}

Note that in the above example we need to keep the function in the
dependencies list. This ensures that a change in the productId prop of 
ProductPage automatically triggers a refetch in the ProductDetails

component.

What can I do if my effect dependencies change too often?

Sometimes, your effect may be using state that changes too often. You might be
tempted to omit that state from a list of dependencies, but that usually leads to
bugs:

function Counter() { 
  const [count, setCount] = useState(0); 
 
  useEffect(() => { 
    const id = setInterval(() => { 
      setCount(count + 1); // This effect depends on the `count` 
state 
    }, 1000); 
    return () => clearInterval(id); 
  }, []); // 🔴 Bug: `count` is not specified as a dependency 
 
  return <h1>{count}</h1>; 
}

The empty set of dependencies, [], means that the effect will only run once
when the component mounts, and not on every re-render. The problem is that
inside the setInterval callback, the value of count does not change, because
we’ve created a closure with the value of count set to 0 as it was when the effect
callback ran. Every second, this callback then calls setCount(0 + 1), so the
count never goes above 1.

Specifying [count] as a list of dependencies would fix the bug, but would cause
the interval to be reset on every change. Effectively, each setInterval would
get one chance to execute before being cleared (similar to a setTimeout.) That
may not be desirable. To fix this, we can use the functional update form of 



setState. It lets us specify how the state needs to change without referencing
the current state:

function Counter() { 
  const [count, setCount] = useState(0); 
 
  useEffect(() => { 
    const id = setInterval(() => { 
      setCount(c => c + 1); // ✅ This doesn't depend on `count` 
variable outside 
    }, 1000); 
    return () => clearInterval(id); 
  }, []); // ✅  Our effect doesn't use any variables in the 
component scope 
 
  return <h1>{count}</h1>; 
}

(The identity of the setCount function is guaranteed to be stable so it’s safe to
omit.)

Now, the setInterval callback executes once a second, but each time the inner
call to setCount can use an up-to-date value for count (called c in the callback
here.)

In more complex cases (such as if one state depends on another state), try
moving the state update logic outside the effect with the useReducer Hook. This
article offers an example of how you can do this. The identity of the dispatch
function from useReducer is always stable — even if the reducer function is
declared inside the component and reads its props.

As a last resort, if you want something like this in a class, you can use a ref to
hold a mutable variable. Then you can write and read to it. For example:

function Example(props) { 
  // Keep latest props in a ref. 
  const latestProps = useRef(props); 
  useEffect(() => { 
    latestProps.current = props; 
  }); 
 
  useEffect(() => { 
    function tick() { 
      // Read latest props at any time 
      console.log(latestProps.current); 

https://adamrackis.dev/state-and-use-reducer/


    } 
 
    const id = setInterval(tick, 1000); 
    return () => clearInterval(id); 
  }, []); // This effect never re-runs 
}

Only do this if you couldn’t find a better alternative, as relying on mutation
makes components less predictable. If there’s a specific pattern that doesn’t
translate well, file an issue with a runnable example code and we can try to help.

How do I implement shouldComponentUpdate?

You can wrap a function component with React.memo to shallowly compare its
props:

It’s not a Hook because it doesn’t compose like Hooks do. React.memo is
equivalent to PureComponent, but it only compares props. (You can also add a
second argument to specify a custom comparison function that takes the old and
new props. If it returns true, the update is skipped.)

React.memo doesn’t compare state because there is no single state object to
compare. But you can make children pure too, or even optimize individual
children with useMemo.

How to memoize calculations?

The useMemo Hook lets you cache calculations between multiple renders by
“remembering” the previous computation:

This code calls computeExpensiveValue(a, b). But if the dependencies [a, b]
haven’t changed since the last value, useMemo skips calling it a second time and
simply reuses the last value it returned.

const Button = React.memo((props) => {
 // your component
});

const memoizedValue = useMemo(() => computeExpensiveValue(a, b), [a,

https://github.com/facebook/react/issues/new


Remember that the function passed to useMemo runs during rendering. Don’t do
anything there that you wouldn’t normally do while rendering. For example,
side effects belong in useEffect, not useMemo.

You may rely on useMemo as a performance optimization, not as a semantic
guarantee. In the future, React may choose to “forget” some previously
memoized values and recalculate them on next render, e.g. to free memory for
offscreen components. Write your code so that it still works without useMemo —
and then add it to optimize performance. (For rare cases when a value must
never be recomputed, you can lazily initialize a ref.)

Conveniently, useMemo also lets you skip an expensive re-render of a child:

Note that this approach won’t work in a loop because Hook calls can’t be placed
inside loops. But you can extract a separate component for the list item, and call 
useMemo there.

How to create expensive objects lazily?

useMemo lets you memoize an expensive calculation if the dependencies are the
same. However, it only serves as a hint, and doesn’t guarantee the computation
won’t re-run. But sometimes you need to be sure an object is only created once.

The first common use case is when creating the initial state is expensive:

function Parent({ a, b }) {
 // Only re-rendered if `a` changes:
 const child1 = useMemo(() => <Child1 a={a} />, [a]);
 // Only re-rendered if `b` changes:
 const child2 = useMemo(() => <Child2 b={b} />, [b]);
 return (
   <>
     {child1}
     {child2}
   </>
 )
}

function Table(props) {
 // ⚠  createRows() is called on every render
 const [rows, setRows] = useState(createRows(props.count));



To avoid re-creating the ignored initial state, we can pass a function to 
useState:

React will only call this function during the first render. See the useState API
reference.

You might also occasionally want to avoid re-creating the useRef() initial
value. For example, maybe you want to ensure some imperative class instance
only gets created once:

useRef does not accept a special function overload like useState. Instead, you
can write your own function that creates and sets it lazily:

 // ...
}

function Table(props) {
 // ✅ createRows() is only called once
 const [rows, setRows] = useState(() => createRows(props.count));
 // ...
}

function Image(props) {
 // ⚠  IntersectionObserver is created on every render
 const ref = useRef(new IntersectionObserver(onIntersect));
 // ...
}

function Image(props) {
 const ref = useRef(null);

 // ✅ IntersectionObserver is created lazily once
 function getObserver() {
   if (ref.current === null) {
     ref.current = new IntersectionObserver(onIntersect);
   }
   return ref.current;
 }

 // When you need it, call getObserver()
 // ...
}



This avoids creating an expensive object until it’s truly needed for the first time.
If you use Flow or TypeScript, you can also give getObserver() a non-nullable
type for convenience.

Are Hooks slow because of creating functions in render?

No. In modern browsers, the raw performance of closures compared to classes
doesn’t differ significantly except in extreme scenarios.

In addition, consider that the design of Hooks is more efficient in a couple ways:

Hooks avoid a lot of the overhead that classes require, like the cost of
creating class instances and binding event handlers in the constructor.

Idiomatic code using Hooks doesn’t need the deep component tree
nesting that is prevalent in codebases that use higher-order components,
render props, and context. With smaller component trees, React has less
work to do.

Traditionally, performance concerns around inline functions in React have been
related to how passing new callbacks on each render breaks 
shouldComponentUpdate optimizations in child components. Hooks approach
this problem from three sides.

The useCallback Hook lets you keep the same callback reference between
re-renders so that shouldComponentUpdate continues to work:

// Will not change unless `a` or `b` changes 
const memoizedCallback = useCallback(() => { 
  doSomething(a, b); 
}, [a, b]);

The useMemo Hook makes it easier to control when individual children
update, reducing the need for pure components.

Finally, the useReducer Hook reduces the need to pass callbacks deeply, as
explained below.

How to avoid passing callbacks down?



We’ve found that most people don’t enjoy manually passing callbacks through
every level of a component tree. Even though it is more explicit, it can feel like a
lot of “plumbing”.

In large component trees, an alternative we recommend is to pass down a 
dispatch function from useReducer via context:

const TodosDispatch = React.createContext(null); 
 
function TodosApp() { 
  // Note: `dispatch` won't change between re-renders 
  const [todos, dispatch] = useReducer(todosReducer); 
 
  return ( 
    <TodosDispatch.Provider value={dispatch}> 
      <DeepTree todos={todos} /> 
    </TodosDispatch.Provider> 
  ); 
}

Any child in the tree inside TodosApp can use the dispatch function to pass
actions up to TodosApp:

function DeepChild(props) { 
  // If we want to perform an action, we can get dispatch from 
context. 
  const dispatch = useContext(TodosDispatch); 
 
  function handleClick() { 
    dispatch({ type: 'add', text: 'hello' }); 
  } 
 
  return ( 
    <button onClick={handleClick}>Add todo</button> 
  ); 
}

This is both more convenient from the maintenance perspective (no need to keep
forwarding callbacks), and avoids the callback problem altogether. Passing 
dispatch down like this is the recommended pattern for deep updates.

Note that you can still choose whether to pass the application state down as
props (more explicit) or as context (more convenient for very deep updates). If
you use context to pass down the state too, use two different context types – the 
dispatch context never changes, so components that read it don’t need to
rerender unless they also need the application state.



How to read an often-changing value from useCallback?

Note

We recommend to pass dispatch down in context rather than individual
callbacks in props. The approach below is only mentioned here for
completeness and as an escape hatch.

In some rare cases you might need to memoize a callback with useCallback but
the memoization doesn’t work very well because the inner function has to be re-
created too often. If the function you’re memoizing is an event handler and isn’t
used during rendering, you can use ref as an instance variable, and save the last
committed value into it manually:

function Form() { 
  const [text, updateText] = useState(''); 
  const textRef = useRef(); 
 
  useEffect(() => { 
    textRef.current = text; // Write it to the ref 
  }); 
 
  const handleSubmit = useCallback(() => { 
    const currentText = textRef.current; // Read it from the ref 
    alert(currentText); 
  }, [textRef]); // Don't recreate handleSubmit like [text] would 
do 
 
  return ( 
    <> 
      <input value={text} onChange={e => 
updateText(e.target.value)} /> 
      <ExpensiveTree onSubmit={handleSubmit} /> 
    </> 
  ); 
}

This is a rather convoluted pattern but it shows that you can do this escape hatch
optimization if you need it. It’s more bearable if you extract it to a custom Hook:

function Form() { 
  const [text, updateText] = useState(''); 
  // Will be memoized even if `text` changes: 
  const handleSubmit = useEventCallback(() => { 
    alert(text); 
  }, [text]); 



 
  return ( 
    <> 
      <input value={text} onChange={e => 
updateText(e.target.value)} /> 
      <ExpensiveTree onSubmit={handleSubmit} /> 
    </> 
  ); 
} 
 
function useEventCallback(fn, dependencies) { 
  const ref = useRef(() => { 
    throw new Error('Cannot call an event handler while 
rendering.'); 
  }); 
 
  useEffect(() => { 
    ref.current = fn; 
  }, [fn, ...dependencies]); 
 
  return useCallback(() => { 
    const fn = ref.current; 
    return fn(); 
  }, [ref]); 
}

In either case, we don’t recommend this pattern and only show it here for
completeness. Instead, it is preferable to avoid passing callbacks deep down.

Under the Hood

How does React associate Hook calls with components?

React keeps track of the currently rendering component. Thanks to the Rules of
Hooks, we know that Hooks are only called from React components (or custom
Hooks – which are also only called from React components).

There is an internal list of “memory cells” associated with each component.
They’re just JavaScript objects where we can put some data. When you call a
Hook like useState(), it reads the current cell (or initializes it during the first
render), and then moves the pointer to the next one. This is how multiple 
useState() calls each get independent local state.

What is the prior art for Hooks?



Hooks synthesize ideas from several different sources:

Our old experiments with functional APIs in the react-future repository.
React community’s experiments with render prop APIs, including Ryan
Florence’s Reactions Component.
Dominic Gannaway’s adopt keyword proposal as a sugar syntax for render
props.
State variables and state cells in DisplayScript.
Reducer components in ReasonReact.
Subscriptions in Rx.
Algebraic effects in Multicore OCaml.

Sebastian Markbåge came up with the original design for Hooks, later refined by
Andrew Clark, Sophie Alpert, Dominic Gannaway, and other members of the
React team.

https://github.com/reactjs/react-future/tree/master/07%20-%20Returning%20State
https://github.com/ryanflorence
https://github.com/reactions/component
https://github.com/trueadm
https://gist.github.com/trueadm/17beb64288e30192f3aa29cad0218067
http://displayscript.org/introduction.html
https://reasonml.github.io/reason-react/docs/en/state-actions-reducer.html
http://reactivex.io/rxjs/class/es6/Subscription.js~Subscription.html
https://github.com/ocamllabs/ocaml-effects-tutorial#2-effectful-computations-in-a-pure-setting
https://github.com/sebmarkbage
https://github.com/acdlite
https://github.com/sophiebits
https://github.com/trueadm


Testing
Testing Overview

You can test React components similar to testing other JavaScript code.

There are a few ways to test React components. Broadly, they divide into
two categories:

Rendering component trees in a simplified test environment and
asserting on their output.
Running a complete app in a realistic browser environment (also
known as “end-to-end” tests).

This documentation section focuses on testing strategies for the first case.
While full end-to-end tests can be very useful to prevent regressions to
important workflows, such tests are not concerned with React components
in particular, and are out of the scope of this section.

Tradeoffs

When choosing testing tools, it is worth considering a few tradeoffs:

Iteration speed vs Realistic environment: Some tools offer a very
quick feedback loop between making a change and seeing the result,
but don’t model the browser behavior precisely. Other tools might use
a real browser environment, but reduce the iteration speed and are
flakier on a continuous integration server.
How much to mock: With components, the distinction between a
“unit” and “integration” test can be blurry. If you’re testing a form,
should its test also test the buttons inside of it? Or should a button
component have its own test suite? Should refactoring a button ever
break the form test?

Different answers may work for different teams and products.



Recommended Tools

Jest is a JavaScript test runner that lets you access the DOM via jsdom.
While jsdom is only an approximation of how the browser works, it is often
good enough for testing React components. Jest provides a great iteration
speed combined with powerful features like mocking modules and timers so
you can have more control over how the code executes.

React Testing Library is a set of helpers that let you test React
components without relying on their implementation details. This approach
makes refactoring a breeze and also nudges you towards best practices for
accessibility. Although it doesn’t provide a way to “shallowly” render a
component without its children, a test runner like Jest lets you do this by
mocking.

Learn More

This section is divided in two pages:

Recipes: Common patterns when writing tests for React components.
Environments: What to consider when setting up a testing environment
for React components.

Testing Recipes

Common testing patterns for React components.

Note:

This page assumes you’re using Jest as a test runner. If you use a
different test runner, you may need to adjust the API, but the overall
shape of the solution will likely be the same. Read more details on
setting up a testing environment on the Testing Environments page.

On this page, we will primarily use function components. However, these
testing strategies don’t depend on implementation details, and work just as
well for class components too.

https://facebook.github.io/jest/
https://testing-library.com/react
https://jestjs.io/


Setup/Teardown
act()

Rendering
Data Fetching
Mocking Modules
Events
Timers
Snapshot Testing
Multiple Renderers
Something Missing?

Setup/Teardown

For each test, we usually want to render our React tree to a DOM element
that’s attached to document. This is important so that it can receive DOM
events. When the test ends, we want to “clean up” and unmount the tree
from the document.

A common way to do it is to use a pair of beforeEach and afterEach
blocks so that they’ll always run and isolate the effects of a test to itself:

import { unmountComponentAtNode } from "react-dom";

let container = null;
beforeEach(() => {
 // setup a DOM element as a render target
 container = document.createElement("div");
 document.body.appendChild(container);
});

afterEach(() => {
 // cleanup on exiting
 unmountComponentAtNode(container);
 container.remove();
 container = null;
});



You may use a different pattern, but keep in mind that we want to execute
the cleanup even if a test fails. Otherwise, tests can become “leaky”, and
one test can change the behavior of another test. That makes them difficult
to debug.

act()

When writing UI tests, tasks like rendering, user events, or data fetching
can be considered as “units” of interaction with a user interface. react-
dom/test-utils provides a helper called act() that makes sure all updates
related to these “units” have been processed and applied to the DOM before
you make any assertions:

This helps make your tests run closer to what real users would experience
when using your application. The rest of these examples use act() to make
these guarantees.

You might find using act() directly a bit too verbose. To avoid some of the
boilerplate, you could use a library like React Testing Library, whose
helpers are wrapped with act().

Note:

The name act comes from the Arrange-Act-Assert pattern.

Rendering

Commonly, you might want to test whether a component renders correctly
for given props. Consider a simple component that renders a message based
on a prop:

act(() => {
 // render components
});
// make assertions

https://testing-library.com/react
http://wiki.c2.com/?ArrangeActAssert


We can write a test for this component:

// hello.test.js 
 
import React from "react"; 
import { render, unmountComponentAtNode } from "react-dom"; 
import { act } from "react-dom/test-utils"; 
 
import Hello from "./hello"; 
 
let container = null; 
beforeEach(() => { 
  // setup a DOM element as a render target 
  container = document.createElement("div"); 
  document.body.appendChild(container); 
}); 
 
afterEach(() => { 
  // cleanup on exiting 
  unmountComponentAtNode(container); 
  container.remove(); 
  container = null; 
}); 
 
it("renders with or without a name", () => { 
  act(() => { 
    render(<Hello />, container); 
  }); 
  expect(container.textContent).toBe("Hey, stranger"); 
 
  act(() => { 
    render(<Hello name="Jenny" />, container); 
  }); 

// hello.js

import React from "react";

export default function Hello(props) {
 if (props.name) {
   return <h1>Hello, {props.name}!</h1>;
 } else {
   return <span>Hey, stranger</span>;
 }
}



  expect(container.textContent).toBe("Hello, Jenny!"); 
 
  act(() => { 
    render(<Hello name="Margaret" />, container); 
  }); 
  expect(container.textContent).toBe("Hello, Margaret!"); 
});

Data Fetching

Instead of calling real APIs in all your tests, you can mock requests with
dummy data. Mocking data fetching with “fake” data prevents flaky tests
due to an unavailable backend, and makes them run faster. Note: you may
still want to run a subset of tests using an “end-to-end” framework that tells
whether the whole app is working together.

// user.js

import React, { useState, useEffect } from "react";

export default function User(props) {
 const [user, setUser] = useState(null);

 async function fetchUserData(id) {
   const response = await fetch("/" + id);
   setUser(await response.json());
 }

 useEffect(() => {
   fetchUserData(props.id);
 }, [props.id]);

 if (!user) {
   return "loading...";
 }

 return (
   <details>
     <summary>{user.name}</summary>
     <strong>{user.age}</strong> years old



We can write tests for it:

// user.test.js 
 
import React from "react"; 
import { render, unmountComponentAtNode } from "react-dom"; 
import { act } from "react-dom/test-utils"; 
import User from "./user"; 
 
let container = null; 
beforeEach(() => { 
  // setup a DOM element as a render target 
  container = document.createElement("div"); 
  document.body.appendChild(container); 
}); 
 
afterEach(() => { 
  // cleanup on exiting 
  unmountComponentAtNode(container); 
  container.remove(); 
  container = null; 
}); 
 
it("renders user data", async () => { 
  const fakeUser = { 
    name: "Joni Baez", 
    age: "32", 
    address: "123, Charming Avenue" 
  }; 
 
  jest.spyOn(global, "fetch").mockImplementation(() => 
    Promise.resolve({ 
      json: () => Promise.resolve(fakeUser) 
    }) 
  ); 
 
  // Use the asynchronous version of act to apply resolved 
promises 
  await act(async () => { 
    render(<User id="123" />, container); 

     <br />
     lives in {user.address}
   </details>
 );
}



  }); 
 
  
expect(container.querySelector("summary").textContent).toBe(fak
eUser.name); 
  
expect(container.querySelector("strong").textContent).toBe(fake
User.age); 
  expect(container.textContent).toContain(fakeUser.address); 
 
  // remove the mock to ensure tests are completely isolated 
  global.fetch.mockRestore(); 
});

Mocking Modules

Some modules might not work well inside a testing environment, or may
not be as essential to the test itself. Mocking out these modules with
dummy replacements can make it easier to write tests for your own code.

Consider a Contact component that embeds a third-party GoogleMap
component:

// map.js

import React from "react";

import { LoadScript, GoogleMap } from "react-google-maps";
export default function Map(props) {
 return (
   <LoadScript id="script-loader" googleMapsApiKey="YOUR_API_KE

     <GoogleMap id="example-map" center={props.center} />
   </LoadScript>
 );
}

// contact.js

import React from "react";
import Map from "./map";



If we don’t want to load this component in our tests, we can mock out the
dependency itself to a dummy component, and run our tests:

// contact.test.js 
 
import React from "react"; 
import { render, unmountComponentAtNode } from "react-dom"; 
import { act } from "react-dom/test-utils"; 
 
import Contact from "./contact"; 
import MockedMap from "./map"; 
 
jest.mock("./map", () => { 
  return function DummyMap(props) { 
    return ( 
      <div data-testid="map"> 
        {props.center.lat}:{props.center.long} 
      </div> 
    ); 
  }; 
}); 
 
let container = null; 
beforeEach(() => { 
  // setup a DOM element as a render target 
  container = document.createElement("div"); 
  document.body.appendChild(container); 

export default function Contact(props) {
 return (
   <div>
     <address>
       Contact {props.name} via{" "}
       <a data-testid="email" href={"mailto:" + props.email}>
         email
       </a>
       or on their <a data-testid="site" href={props.site}>
         website
       </a>.
     </address>
     <Map center={props.center} />
   </div>
 );
}



}); 
 
afterEach(() => { 
  // cleanup on exiting 
  unmountComponentAtNode(container); 
  container.remove(); 
  container = null; 
}); 
 
it("should render contact information", () => { 
  const center = { lat: 0, long: 0 }; 
  act(() => { 
    render( 
      <Contact 
        name="Joni Baez" 
        email="test@example.com" 
        site="http://test.com" 
        center={center} 
      />, 
      container 
    ); 
  }); 
 
  expect( 
    container.querySelector("[data-
testid='email']").getAttribute("href") 
  ).toEqual("mailto:test@example.com"); 
 
  expect( 
    container.querySelector('[data-
testid="site"]').getAttribute("href") 
  ).toEqual("http://test.com"); 
 
  expect(container.querySelector('[data-
testid="map"]').textContent).toEqual( 
    "0:0" 
  ); 
});

Events

We recommend dispatching real DOM events on DOM elements, and then
asserting on the result. Consider a Toggle component:



We could write tests for it:

// toggle.test.js 
 
import React from "react"; 
import { render, unmountComponentAtNode } from "react-dom"; 
import { act } from "react-dom/test-utils"; 
 
import Toggle from "./toggle"; 
 
let container = null; 
beforeEach(() => { 
  // setup a DOM element as a render target 
  container = document.createElement("div"); 
  document.body.appendChild(container); 
}); 
 
afterEach(() => { 
  // cleanup on exiting 
  unmountComponentAtNode(container); 
  container.remove(); 
  container = null; 
}); 
 
it("changes value when clicked", () => { 
  const onChange = jest.fn(); 

// toggle.js

import React, { useState } from "react";

export default function Toggle(props) {
 const [state, setState] = useState(false);
 return (
   <button
     onClick={() => {
       setState(previousState => !previousState);
       props.onChange(!state);
     }}
     data-testid="toggle"
   >
     {state === true ? "Turn off" : "Turn on"}
   </button>
 );
}



  act(() => { 
    render(<Toggle onChange={onChange} />, container); 
  }); 
 
  // get a hold of the button element, and trigger some clicks 
on it 
  const button = document.querySelector("[data-
testid=toggle]"); 
  expect(button.innerHTML).toBe("Turn on"); 
 
  act(() => { 
    button.dispatchEvent(new MouseEvent("click", { bubbles: 
true })); 
  }); 
 
  expect(onChange).toHaveBeenCalledTimes(1); 
  expect(button.innerHTML).toBe("Turn off"); 
 
  act(() => { 
    for (let i = 0; i < 5; i++) { 
      button.dispatchEvent(new MouseEvent("click", { bubbles: 
true })); 
    } 
  }); 
 
  expect(onChange).toHaveBeenCalledTimes(6); 
  expect(button.innerHTML).toBe("Turn on"); 
});

Different DOM events and their properties are described in MDN. Note that
you need to pass { bubbles: true } in each event you create for it to
reach the React listener because React automatically delegates events to the
root.

Note:

React Testing Library offers a more concise helper for firing events.

Timers

Your code might use timer-based functions like setTimeout to schedule
more work in the future. In this example, a multiple choice panel waits for a

https://developer.mozilla.org/en-US/docs/Web/API/MouseEvent
https://testing-library.com/docs/dom-testing-library/api-events


selection and advances, timing out if a selection isn’t made in 5 seconds:

We can write tests for this component by leveraging Jest’s timer mocks, and
testing the different states it can be in.

// card.test.js 
 
import React from "react"; 
import { render, unmountComponentAtNode } from "react-dom"; 
import { act } from "react-dom/test-utils"; 
 
import Card from "./card"; 
 
let container = null; 
beforeEach(() => { 
  // setup a DOM element as a render target 
  container = document.createElement("div"); 
  document.body.appendChild(container); 

// card.js

import React, { useEffect } from "react";

export default function Card(props) {
 useEffect(() => {
   const timeoutID = setTimeout(() => {
     props.onSelect(null);
   }, 5000);
   return () => {
     clearTimeout(timeoutID);
   };
 }, [props.onSelect]);

 return [1, 2, 3, 4].map(choice => (
   <button
     key={choice}
     data-testid={choice}
     onClick={() => props.onSelect(choice)}
   >
     {choice}
   </button>
 ));
}

https://jestjs.io/docs/en/timer-mocks


  jest.useFakeTimers(); 
}); 
 
afterEach(() => { 
  // cleanup on exiting 
  unmountComponentAtNode(container); 
  container.remove(); 
  container = null; 
  jest.useRealTimers(); 
}); 
 
it("should select null after timing out", () => { 
  const onSelect = jest.fn(); 
  act(() => { 
    render(<Card onSelect={onSelect} />, container); 
  }); 
 
  // move ahead in time by 100ms 
  act(() => { 
    jest.advanceTimersByTime(100); 
  }); 
  expect(onSelect).not.toHaveBeenCalled(); 
 
  // and then move ahead by 5 seconds 
  act(() => { 
    jest.advanceTimersByTime(5000); 
  }); 
  expect(onSelect).toHaveBeenCalledWith(null); 
}); 
 
it("should cleanup on being removed", () => { 
  const onSelect = jest.fn(); 
  act(() => { 
    render(<Card onSelect={onSelect} />, container); 
  }); 
 
  act(() => { 
    jest.advanceTimersByTime(100); 
  }); 
  expect(onSelect).not.toHaveBeenCalled(); 
 
  // unmount the app 
  act(() => { 
    render(null, container); 
  }); 
 
  act(() => { 
    jest.advanceTimersByTime(5000); 



  }); 
  expect(onSelect).not.toHaveBeenCalled(); 
}); 
 
it("should accept selections", () => { 
  const onSelect = jest.fn(); 
  act(() => { 
    render(<Card onSelect={onSelect} />, container); 
  }); 
 
  act(() => { 
    container 
      .querySelector("[data-testid='2']") 
      .dispatchEvent(new MouseEvent("click", { bubbles: true 
})); 
  }); 
 
  expect(onSelect).toHaveBeenCalledWith(2); 
});

You can use fake timers only in some tests. Above, we enabled them by
calling jest.useFakeTimers(). The main advantage they provide is that
your test doesn’t actually have to wait five seconds to execute, and you also
didn’t need to make the component code more convoluted just for testing.

Snapshot Testing

Frameworks like Jest also let you save “snapshots” of data with 
toMatchSnapshot / toMatchInlineSnapshot. With these, we can “save” the
rendered component output and ensure that a change to it has to be
explicitly committed as a change to the snapshot.

In this example, we render a component and format the rendered HTML
with the pretty package, before saving it as an inline snapshot:

// hello.test.js, again 
 
import React from "react"; 
import { render, unmountComponentAtNode } from "react-dom"; 
import { act } from "react-dom/test-utils"; 
import pretty from "pretty"; 
 

https://jestjs.io/docs/en/snapshot-testing
https://www.npmjs.com/package/pretty


import Hello from "./hello"; 
 
let container = null; 
beforeEach(() => { 
  // setup a DOM element as a render target 
  container = document.createElement("div"); 
  document.body.appendChild(container); 
}); 
 
afterEach(() => { 
  // cleanup on exiting 
  unmountComponentAtNode(container); 
  container.remove(); 
  container = null; 
}); 
 
it("should render a greeting", () => { 
  act(() => { 
    render(<Hello />, container); 
  }); 
 
  expect( 
    pretty(container.innerHTML) 
  ).toMatchInlineSnapshot(); /* ... gets filled automatically 
by jest ... */ 
 
  act(() => { 
    render(<Hello name="Jenny" />, container); 
  }); 
 
  expect( 
    pretty(container.innerHTML) 
  ).toMatchInlineSnapshot(); /* ... gets filled automatically 
by jest ... */ 
 
  act(() => { 
    render(<Hello name="Margaret" />, container); 
  }); 
 
  expect( 
    pretty(container.innerHTML) 
  ).toMatchInlineSnapshot(); /* ... gets filled automatically 
by jest ... */ 
});

It’s typically better to make more specific assertions than to use snapshots.
These kinds of tests include implementation details so they break easily,



and teams can get desensitized to snapshot breakages. Selectively mocking
some child components can help reduce the size of snapshots and keep
them readable for the code review.

Multiple Renderers

In rare cases, you may be running a test on a component that uses multiple
renderers. For example, you may be running snapshot tests on a component
with react-test-renderer, that internally uses render from react-dom
inside a child component to render some content. In this scenario, you can
wrap updates with act()s corresponding to their renderers.

Something Missing?

If some common scenario is not covered, please let us know on the issue
tracker for the documentation website.

Testing Environments

This document goes through the factors that can affect your environment
and recommendations for some scenarios.

Test runners

import { act as domAct } from "react-dom/test-utils";
import { act as testAct, create } from "react-test-renderer";
// ...
let root;
domAct(() => {
 testAct(() => {
   root = create(<App />);
 });
});
expect(root).toMatchSnapshot();

https://github.com/reactjs/reactjs.org/issues


Test runners like Jest, mocha, ava let you write test suites as regular
JavaScript, and run them as part of your development process. Additionally,
test suites are run as part of continuous integration.

Jest is widely compatible with React projects, supporting features like
mocked modules and timers, and jsdom support. If you use Create
React App, Jest is already included out of the box with useful
defaults.
Libraries like mocha work well in real browser environments, and
could help for tests that explicitly need it.
End-to-end tests are used for testing longer flows across multiple
pages, and require a different setup.

Mocking a rendering surface

Tests often run in an environment without access to a real rendering surface
like a browser. For these environments, we recommend simulating a
browser with jsdom, a lightweight browser implementation that runs inside
Node.js.

In most cases, jsdom behaves like a regular browser would, but doesn’t
have features like layout and navigation. This is still useful for most web-
based component tests, since it runs quicker than having to start up a
browser for each test. It also runs in the same process as your tests, so you
can write code to examine and assert on the rendered DOM.

Just like in a real browser, jsdom lets us model user interactions; tests can
dispatch events on DOM nodes, and then observe and assert on the side
effects of these actions (example).

A large portion of UI tests can be written with the above setup: using Jest as
a test runner, rendered to jsdom, with user interactions specified as
sequences of browser events, powered by the act() helper (example). For
example, a lot of React’s own tests are written with this combination.

If you’re writing a library that tests mostly browser-specific behavior, and
requires native browser behavior like layout or real inputs, you could use a

https://jestjs.io/
https://mochajs.org/
https://github.com/avajs/ava
https://facebook.github.io/create-react-app/docs/running-tests
https://mochajs.org/#running-mocha-in-the-browser
https://github.com/jsdom/jsdom
https://github.com/jsdom/jsdom#unimplemented-parts-of-the-web-platform


framework like mocha.

In an environment where you can’t simulate a DOM (e.g. testing React
Native components on Node.js), you could use event simulation helpers to
simulate interactions with elements. Alternately, you could use the 
fireEvent helper from @testing-library/react-native.

Frameworks like Cypress, puppeteer and webdriver are useful for running
end-to-end tests.

Mocking functions

When writing tests, we’d like to mock out the parts of our code that don’t
have equivalents inside our testing environment (e.g. checking 
navigator.onLine status inside Node.js). Tests could also spy on some
functions, and observe how other parts of the test interact with them. It is
then useful to be able to selectively mock these functions with test-friendly
versions.

This is especially useful for data fetching. It is usually preferable to use
“fake” data for tests to avoid the slowness and flakiness due to fetching
from real API endpoints (example). This helps make the tests predictable.
Libraries like Jest and sinon, among others, support mocked functions. For
end-to-end tests, mocking network can be more difficult, but you might also
want to test the real API endpoints in them anyway.

Mocking modules

Some components have dependencies for modules that may not work well
in test environments, or aren’t essential to our tests. It can be useful to
selectively mock these modules out with suitable replacements (example).

On Node.js, runners like Jest support mocking modules. You could also use
libraries like mock-require.

Mocking timers

https://mochajs.org/
https://testing-library.com/docs/react-native-testing-library/intro
https://www.cypress.io/
https://github.com/GoogleChrome/puppeteer
https://www.seleniumhq.org/projects/webdriver/
https://jestjs.io/
https://sinonjs.org/
https://jestjs.io/docs/en/manual-mocks
https://www.npmjs.com/package/mock-require


Components might be using time-based functions like setTimeout, 
setInterval, or Date.now. In testing environments, it can be helpful to
mock these functions out with replacements that let you manually
“advance” time. This is great for making sure your tests run fast! Tests that
are dependent on timers would still resolve in order, but quicker (example).
Most frameworks, including Jest, sinon and lolex, let you mock timers in
your tests.

Sometimes, you may not want to mock timers. For example, maybe you’re
testing an animation, or interacting with an endpoint that’s sensitive to
timing (like an API rate limiter). Libraries with timer mocks let you enable
and disable them on a per test/suite basis, so you can explicitly choose how
these tests would run.

End-to-end tests

End-to-end tests are useful for testing longer workflows, especially when
they’re critical to your business (such as payments or signups). For these
tests, you’d probably want to test how a real browser renders the whole app,
fetches data from the real API endpoints, uses sessions and cookies,
navigates between different links. You might also likely want to make
assertions not just on the DOM state, but on the backing data as well (e.g. to
verify whether the updates have been persisted to the database).

In this scenario, you would use a framework like Cypress, Playwright or a
library like Puppeteer so you can navigate between multiple routes and
assert on side effects not just in the browser, but potentially on the backend
as well.

https://jestjs.io/docs/en/timer-mocks
https://sinonjs.org/releases/latest/fake-timers
https://github.com/sinonjs/lolex
https://www.cypress.io/
https://playwright.dev/
https://pptr.dev/


Contributing
How to Contribute

React is one of Facebook’s first open source projects that is both under very
active development and is also being used to ship code to everybody on
facebook.com. We’re still working out the kinks to make contributing to
this project as easy and transparent as possible, but we’re not quite there
yet. Hopefully this document makes the process for contributing clear and
answers some questions that you may have.

Code of Conduct

Facebook has adopted the Contributor Covenant as its Code of Conduct,
and we expect project participants to adhere to it. Please read the full text so
that you can understand what actions will and will not be tolerated.

Open Development

All work on React happens directly on GitHub. Both core team members
and external contributors send pull requests which go through the same
review process.

Semantic Versioning

React follows semantic versioning. We release patch versions for critical
bugfixes, minor versions for new features or non-essential changes, and
major versions for any breaking changes. When we make breaking changes,
we also introduce deprecation warnings in a minor version so that our users
learn about the upcoming changes and migrate their code in advance. Learn
more about our commitment to stability and incremental migration in our
versioning policy.

https://www.facebook.com/
https://github.com/facebook/react/blob/main/CODE_OF_CONDUCT.md
https://www.contributor-covenant.org/
https://github.com/facebook/react/blob/main/CODE_OF_CONDUCT.md
https://github.com/facebook/react
https://semver.org/


Every significant change is documented in the changelog file.

Branch Organization

Submit all changes directly to the main branch. We don’t use separate
branches for development or for upcoming releases. We do our best to keep 
main in good shape, with all tests passing.

Code that lands in main must be compatible with the latest stable release. It
may contain additional features, but no breaking changes. We should be
able to release a new minor version from the tip of main at any time.

Feature Flags

To keep the main branch in a releasable state, breaking changes and
experimental features must be gated behind a feature flag.

Feature flags are defined in packages/shared/ReactFeatureFlags.js.
Some builds of React may enable different sets of feature flags; for
example, the React Native build may be configured differently than React
DOM. These flags are found in packages/shared/forks. Feature flags are
statically typed by Flow, so you can run yarn flow to confirm that you’ve
updated all the necessary files.

React’s build system will strip out disabled feature branches before
publishing. A continuous integration job runs on every commit to check for
changes in bundle size. You can use the change in size as a signal that a
feature was gated correctly.

Bugs

Where to Find Known Issues

We are using GitHub Issues for our public bugs. We keep a close eye on
this and try to make it clear when we have an internal fix in progress.
Before filing a new task, try to make sure your problem doesn’t already
exist.

https://github.com/facebook/react/blob/main/CHANGELOG.md
https://github.com/facebook/react/tree/main
https://github.com/facebook/react/blob/main/packages/shared/ReactFeatureFlags.js
https://github.com/facebook/react/tree/main/packages/shared/forks
https://github.com/facebook/react/issues


Reporting New Issues

The best way to get your bug fixed is to provide a reduced test case. This
JSFiddle template is a great starting point.

Security Bugs

Facebook has a bounty program for the safe disclosure of security bugs.
With that in mind, please do not file public issues; go through the process
outlined on that page.

How to Get in Touch

IRC: #reactjs on freenode
Discussion forums

There is also an active community of React users on the Discord chat
platform in case you need help with React.

Proposing a Change

If you intend to change the public API, or make any non-trivial changes to
the implementation, we recommend filing an issue. This lets us reach an
agreement on your proposal before you put significant effort into it.

If you’re only fixing a bug, it’s fine to submit a pull request right away but
we still recommend to file an issue detailing what you’re fixing. This is
helpful in case we don’t accept that specific fix but want to keep track of
the issue.

Your First Pull Request

Working on your first Pull Request? You can learn how from this free video
series:

How to Contribute to an Open Source Project on GitHub

https://jsfiddle.net/Luktwrdm/
https://www.facebook.com/whitehat/
https://webchat.freenode.net/?channels=reactjs
file:///C:/community/support.html#popular-discussion-forums
https://www.reactiflux.com/
https://github.com/facebook/react/issues/new
https://egghead.io/courses/how-to-contribute-to-an-open-source-project-on-github


To help you get your feet wet and get you familiar with our contribution
process, we have a list of good first issues that contain bugs that have a
relatively limited scope. This is a great place to get started.

If you decide to fix an issue, please be sure to check the comment thread in
case somebody is already working on a fix. If nobody is working on it at the
moment, please leave a comment stating that you intend to work on it so
other people don’t accidentally duplicate your effort.

If somebody claims an issue but doesn’t follow up for more than two
weeks, it’s fine to take it over but you should still leave a comment.

Sending a Pull Request

The core team is monitoring for pull requests. We will review your pull
request and either merge it, request changes to it, or close it with an
explanation. For API changes we may need to fix our internal uses at
Facebook.com, which could cause some delay. We’ll do our best to provide
updates and feedback throughout the process.

Before submitting a pull request, please make sure the following is done:

1. Fork the repository and create your branch from main.
2. Run yarn in the repository root.
3. If you’ve fixed a bug or added code that should be tested, add tests!
4. Ensure the test suite passes (yarn test). Tip: yarn test --watch 

TestName is helpful in development.
5. Run yarn test --prod to test in the production environment.
6. If you need a debugger, run yarn debug-test --watch TestName,

open chrome://inspect, and press “Inspect”.
7. Format your code with prettier (yarn prettier).
8. Make sure your code lints (yarn lint). Tip: yarn linc to only check

changed files.
9. Run the Flow typechecks (yarn flow).

10. If you haven’t already, complete the CLA.

Contributor License Agreement (CLA)

https://github.com/facebook/react/issues?q=is:open+is:issue+label:%22good+first+issue%22
https://github.com/facebook/react
https://github.com/prettier/prettier
https://flowtype.org/


In order to accept your pull request, we need you to submit a CLA. You
only need to do this once, so if you’ve done this for another Facebook open
source project, you’re good to go. If you are submitting a pull request for
the first time, just let us know that you have completed the CLA and we can
cross-check with your GitHub username.

Complete your CLA here.

Contribution Prerequisites

You have Node installed at LTS and Yarn at v1.2.0+.
You have JDK installed.
You have gcc installed or are comfortable installing a compiler if
needed. Some of our dependencies may require a compilation step. On
OS X, the Xcode Command Line Tools will cover this. On Ubuntu, 
apt-get install build-essential will install the required
packages. Similar commands should work on other Linux distros.
Windows will require some additional steps, see the node-gyp

installation instructions for details.
You are familiar with Git.

Development Workflow

After cloning React, run yarn to fetch its dependencies. Then, you can run
several commands:

yarn lint checks the code style.
yarn linc is like yarn lint but faster because it only checks files that
differ in your branch.
yarn test runs the complete test suite.
yarn test --watch runs an interactive test watcher.
yarn test --prod runs tests in the production environment.
yarn test <pattern> runs tests with matching filenames.
yarn debug-test is just like yarn test but with a debugger. Open 
chrome://inspect and press “Inspect”.
yarn flow runs the Flow typechecks.
yarn build creates a build folder with all the packages.

https://code.facebook.com/cla
https://nodejs.org/
https://yarnpkg.com/en/
https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://github.com/nodejs/node-gyp#installation
https://flowtype.org/


yarn build react/index,react-dom/index --type=UMD creates
UMD builds of just React and ReactDOM.

We recommend running yarn test (or its variations above) to make sure
you don’t introduce any regressions as you work on your change. However,
it can be handy to try your build of React in a real project.

First, run yarn build. This will produce pre-built bundles in build folder,
as well as prepare npm packages inside build/packages.

The easiest way to try your changes is to run yarn build 

react/index,react-dom/index --type=UMD and then open 
fixtures/packaging/babel-standalone/dev.html. This file already uses 
react.development.js from the build folder so it will pick up your
changes.

If you want to try your changes in your existing React project, you may
copy build/node_modules/react/umd/react.development.js, 
build/node_modules/react-dom/umd/react-dom.development.js, or any
other build products into your app and use them instead of the stable
version.

If your project uses React from npm, you may delete react and react-dom
in its dependencies and use yarn link to point them to your local build
folder. Note that instead of --type=UMD you’ll want to pass --type=NODE
when building. You’ll also need to build the scheduler package:

cd ~/path_to_your_react_clone/
yarn build react/index,react/jsx,react-dom/index,scheduler --typ

cd build/node_modules/react
yarn link
cd build/node_modules/react-dom
yarn link

cd ~/path/to/your/project
yarn link react react-dom



Every time you run yarn build in the React folder, the updated versions
will appear in your project’s node_modules. You can then rebuild your
project to try your changes.

If some package is still missing (e.g. maybe you use react-dom/server in
your project), you can always do a full build with yarn build. Note that
running yarn build without options takes a long time.

We still require that your pull request contains unit tests for any new
functionality. This way we can ensure that we don’t break your code in the
future.

Style Guide

We use an automatic code formatter called Prettier. Run yarn prettier
after making any changes to the code.

Then, our linter will catch most issues that may exist in your code. You can
check the status of your code styling by simply running yarn linc.

However, there are still some styles that the linter cannot pick up. If you are
unsure about something, looking at Airbnb’s Style Guide will guide you in
the right direction.

Request for Comments (RFC)

Many changes, including bug fixes and documentation improvements can
be implemented and reviewed via the normal GitHub pull request
workflow.

Some changes though are “substantial”, and we ask that these be put
through a bit of a design process and produce a consensus among the React
core team.

The “RFC” (request for comments) process is intended to provide a
consistent and controlled path for new features to enter the project. You can
contribute by visiting the rfcs repository.

https://prettier.io/
https://github.com/airbnb/javascript
https://github.com/reactjs/rfcs


License

By contributing to React, you agree that your contributions will be licensed
under its MIT license.

What Next?

Read the next section to learn how the codebase is organized.

Codebase Overview

This section will give you an overview of the React codebase organization,
its conventions, and the implementation.

If you want to contribute to React we hope that this guide will help you feel
more comfortable making changes.

We don’t necessarily recommend any of these conventions in React apps.
Many of them exist for historical reasons and might change with time.

Top-Level Folders

After cloning the React repository, you will see a few top-level folders in it:

packages contains metadata (such as package.json) and the source
code (src subdirectory) for all packages in the React repository. If
your change is related to the code, the src subdirectory of each
package is where you’ll spend most of your time.
fixtures contains a few small React test applications for contributors.
build is the build output of React. It is not in the repository but it will
appear in your React clone after you build it for the first time.

The documentation is hosted in a separate repository from React.

There are a few other top-level folders but they are mostly used for the
tooling and you likely won’t ever encounter them when contributing.

https://github.com/facebook/react
https://github.com/facebook/react/tree/main/packages
https://github.com/facebook/react/tree/main/fixtures
https://github.com/reactjs/reactjs.org


Colocated Tests

We don’t have a top-level directory for unit tests. Instead, we put them into
a directory called __tests__ relative to the files that they test.

For example, a test for setInnerHTML.js is located in 
__tests__/setInnerHTML-test.js right next to it.

Warnings and Invariants

The React codebase uses console.error to display warnings:

Warnings are only enabled in development. In production, they are
completely stripped out. If you need to forbid some code path from
executing, use invariant module instead:

The invariant is thrown when the invariant condition is false.

“Invariant” is just a way of saying “this condition always holds true”. You
can think about it as making an assertion.

It is important to keep development and production behavior similar, so 
invariant throws both in development and in production. The error
messages are automatically replaced with error codes in production to avoid
negatively affecting the byte size.

Development and Production

if (__DEV__) {
 console.error('Something is wrong.');
}

var invariant = require('invariant');

invariant(
 2 + 2 === 4,
 'You shall not pass!'
);

https://github.com/facebook/react/blob/87724bd87506325fcaf2648c70fc1f43411a87be/src/renderers/dom/client/utils/setInnerHTML.js
https://github.com/facebook/react/blob/87724bd87506325fcaf2648c70fc1f43411a87be/src/renderers/dom/client/utils/__tests__/setInnerHTML-test.js


You can use __DEV__ pseudo-global variable in the codebase to guard
development-only blocks of code.

It is inlined during the compile step, and turns into process.env.NODE_ENV 
!== 'production' checks in the CommonJS builds.

For standalone builds, it becomes true in the unminified build, and gets
completely stripped out with the if blocks it guards in the minified build.

Flow

We recently started introducing Flow checks to the codebase. Files marked
with the @flow annotation in the license header comment are being
typechecked.

We accept pull requests adding Flow annotations to existing code. Flow
annotations look like this:

When possible, new code should use Flow annotations. You can run yarn 
flow locally to check your code with Flow.

Multiple Packages

React is a monorepo. Its repository contains multiple separate packages so
that their changes can be coordinated together, and issues live in one place.

React Core

if (__DEV__) {
 // This code will only run in development.
}

ReactRef.detachRefs = function(
 instance: ReactInstance,
 element: ReactElement | string | number | null | false,
): void {
 // ...
}

https://flow.org/
https://github.com/facebook/react/pull/7600/files
https://danluu.com/monorepo/


The “core” of React includes all the top-level React APIs, for example:

React.createElement()

React.Component

React.Children

React core only includes the APIs necessary to define components. It
does not include the reconciliation algorithm or any platform-specific code.
It is used both by React DOM and React Native components.

The code for React core is located in packages/react in the source tree. It
is available on npm as the react package. The corresponding standalone
browser build is called react.js, and it exports a global called React.

Renderers

React was originally created for the DOM but it was later adapted to also
support native platforms with React Native. This introduced the concept of
“renderers” to React internals.

Renderers manage how a React tree turns into the underlying platform
calls.

Renderers are also located in packages/:

React DOM Renderer renders React components to the DOM. It
implements top-level ReactDOM APIs and is available as react-dom
npm package. It can also be used as standalone browser bundle called 
react-dom.js that exports a ReactDOM global.
React Native Renderer renders React components to native views. It is
used internally by React Native.
React Test Renderer renders React components to JSON trees. It is
used by the Snapshot Testing feature of Jest and is available as react-
test-renderer npm package.

The only other officially supported renderer is react-art. It used to be in a
separate GitHub repository but we moved it into the main source tree for
now.

https://github.com/facebook/react/tree/main/packages/react
https://www.npmjs.com/package/react
https://reactnative.dev/
https://github.com/facebook/react/tree/main/packages/
https://github.com/facebook/react/tree/main/packages/react-dom
https://www.npmjs.com/package/react-dom
https://github.com/facebook/react/tree/main/packages/react-native-renderer
https://github.com/facebook/react/tree/main/packages/react-test-renderer
https://facebook.github.io/jest/blog/2016/07/27/jest-14.html
https://facebook.github.io/jest
https://www.npmjs.com/package/react-test-renderer
https://github.com/facebook/react/tree/main/packages/react-art
https://github.com/reactjs/react-art


Note:

Technically the react-native-renderer is a very thin layer that
teaches React to interact with React Native implementation. The real
platform-specific code managing the native views lives in the React
Native repository together with its components.

Reconcilers

Even vastly different renderers like React DOM and React Native need to
share a lot of logic. In particular, the reconciliation algorithm should be as
similar as possible so that declarative rendering, custom components, state,
lifecycle methods, and refs work consistently across platforms.

To solve this, different renderers share some code between them. We call
this part of React a “reconciler”. When an update such as setState() is
scheduled, the reconciler calls render() on components in the tree and
mounts, updates, or unmounts them.

Reconcilers are not packaged separately because they currently have no
public API. Instead, they are exclusively used by renderers such as React
DOM and React Native.

Stack Reconciler

The “stack” reconciler is the implementation powering React 15 and earlier.
We have since stopped using it, but it is documented in detail in the next
section.

Fiber Reconciler

The “fiber” reconciler is a new effort aiming to resolve the problems
inherent in the stack reconciler and fix a few long-standing issues. It has
been the default reconciler since React 16.

Its main goals are:

https://github.com/facebook/react/tree/main/packages/react-native-renderer
https://github.com/facebook/react-native


Ability to split interruptible work in chunks.
Ability to prioritize, rebase and reuse work in progress.
Ability to yield back and forth between parents and children to support
layout in React.
Ability to return multiple elements from render().
Better support for error boundaries.

You can read more about React Fiber Architecture here and here. While it
has shipped with React 16, the async features are not enabled by default yet.

Its source code is located in packages/react-reconciler.

Event System

React implements a layer over native events to smooth out cross-browser
differences. Its source code is located in packages/react-dom/src/events.

What Next?

Read the next section to learn about the pre-React 16 implementation of
reconciler in more detail. We haven’t documented the internals of the new
reconciler yet.

Implementation Notes

This section is a collection of implementation notes for the stack reconciler.

It is very technical and assumes a strong understanding of React public API
as well as how it’s divided into core, renderers, and the reconciler. If you’re
not very familiar with the React codebase, read the codebase overview first.

It also assumes an understanding of the differences between React
components, their instances, and elements.

The stack reconciler was used in React 15 and earlier. It is located at
src/renderers/shared/stack/reconciler.

https://github.com/acdlite/react-fiber-architecture
https://blog.ag-grid.com/inside-fiber-an-in-depth-overview-of-the-new-reconciliation-algorithm-in-react
https://github.com/facebook/react/tree/main/packages/react-reconciler
https://github.com/facebook/react/tree/main/packages/react-dom/src/events
file:///C:/blog/2015/12/18/react-components-elements-and-instances.html
https://github.com/facebook/react/tree/15-stable/src/renderers/shared/stack/reconciler


Video: Building React from Scratch

Paul O’Shannessy gave a talk about building React from scratch that largely
inspired this document.

Both this document and his talk are simplifications of the real codebase so
you might get a better understanding by getting familiar with both of them.

Overview

The reconciler itself doesn’t have a public API. Renderers like React DOM
and React Native use it to efficiently update the user interface according to
the React components written by the user.

Mounting as a Recursive Process

Let’s consider the first time you mount a component:

root.render will pass <App /> along to the reconciler. Remember that 
<App /> is a React element, that is, a description of what to render. You can
think about it as a plain object:

The reconciler will check if App is a class or a function.

If App is a function, the reconciler will call App(props) to get the rendered
element.

If App is a class, the reconciler will instantiate an App with new App(props),
call the componentWillMount() lifecycle method, and then will call the 
render() method to get the rendered element.

Either way, the reconciler will learn the element App “rendered to”.

const root = ReactDOM.createRoot(rootEl);
root.render(<App />);

console.log(<App />);
// { type: App, props: {} }

https://twitter.com/zpao
https://www.youtube.com/watch?v=_MAD4Oly9yg


This process is recursive. App may render to a <Greeting />, Greeting
may render to a <Button />, and so on. The reconciler will “drill down”
through user-defined components recursively as it learns what each
component renders to.

You can imagine this process as a pseudocode:

function isClass(type) {
 // React.Component subclasses have this flag
 return (
   Boolean(type.prototype) &&
   Boolean(type.prototype.isReactComponent)
 );
}

// This function takes a React element (e.g. <App />)
// and returns a DOM or Native node representing the mounted tre
function mount(element) {
 var type = element.type;
 var props = element.props;

 // We will determine the rendered element
 // by either running the type as function
 // or creating an instance and calling render().
 var renderedElement;
 if (isClass(type)) {
   // Component class
   var publicInstance = new type(props);
   // Set the props
   publicInstance.props = props;
   // Call the lifecycle if necessary
   if (publicInstance.componentWillMount) {
     publicInstance.componentWillMount();
   }
   // Get the rendered element by calling render()
   renderedElement = publicInstance.render();
 } else {
   // Component function
   renderedElement = type(props);
 }



Note:

This really is a pseudo-code. It isn’t similar to the real implementation.
It will also cause a stack overflow because we haven’t discussed when
to stop the recursion.

Let’s recap a few key ideas in the example above:

React elements are plain objects representing the component type
(e.g. App) and the props.
User-defined components (e.g. App) can be classes or functions but
they all “render to” elements.
“Mounting” is a recursive process that creates a DOM or Native tree
given the top-level React element (e.g. <App />).

Mounting Host Elements

This process would be useless if we didn’t render something to the screen
as a result.

In addition to user-defined (“composite”) components, React elements may
also represent platform-specific (“host”) components. For example, Button
might return a <div /> from its render method.

 // This process is recursive because a component may
 // return an element with a type of another component.
 return mount(renderedElement);

 // Note: this implementation is incomplete and recurses infini
 // It only handles elements like <App /> or <Button />.
 // It doesn't handle elements like <div /> or <p /> yet.
}

var rootEl = document.getElementById('root');
var node = mount(<App />);
rootEl.appendChild(node);



If element’s type property is a string, we are dealing with a host element:

There is no user-defined code associated with host elements.

When the reconciler encounters a host element, it lets the renderer take care
of mounting it. For example, React DOM would create a DOM node.

If the host element has children, the reconciler recursively mounts them
following the same algorithm as above. It doesn’t matter whether children
are host (like <div><hr /></div>), composite (like <div><Button />

</div>), or both.

The DOM nodes produced by the child components will be appended to the
parent DOM node, and recursively, the complete DOM structure will be
assembled.

Note:

The reconciler itself is not tied to the DOM. The exact result of
mounting (sometimes called “mount image” in the source code)
depends on the renderer, and can be a DOM node (React DOM), a
string (React DOM Server), or a number representing a native view
(React Native).

If we were to extend the code to handle host elements, it would look like
this:

console.log(<div />);
// { type: 'div', props: {} }

function isClass(type) {
 // React.Component subclasses have this flag
 return (
   Boolean(type.prototype) &&
   Boolean(type.prototype.isReactComponent)
 );
}

// This function only handles elements with a composite type.

// For example it handles <App /> and <Button /> but not a <di



// For example, it handles <App /> and <Button />, but not a <di
function mountComposite(element) {
 var type = element.type;
 var props = element.props;

 var renderedElement;
 if (isClass(type)) {
   // Component class
   var publicInstance = new type(props);
   // Set the props
   publicInstance.props = props;
   // Call the lifecycle if necessary
   if (publicInstance.componentWillMount) {
     publicInstance.componentWillMount();
   }
   renderedElement = publicInstance.render();
 } else if (typeof type === 'function') {
   // Component function
   renderedElement = type(props);
 }

 // This is recursive but we'll eventually reach the bottom of 
 // the element is host (e.g. <div />) rather than composite (e
 return mount(renderedElement);
}

// This function only handles elements with a host type.
// For example, it handles <div /> and <p /> but not an <App />.
function mountHost(element) {
 var type = element.type;
 var props = element.props;
 var children = props.children || [];
 if (!Array.isArray(children)) {
   children = [children];
 }
 children = children.filter(Boolean);

 // This block of code shouldn't be in the reconciler.
 // Different renderers might initialize nodes differently.
 // For example, React Native would create iOS or Android views
 var node = document.createElement(type);
 Object.keys(props).forEach(propName => {

if (propName !== 'children') {



This is working but still far from how the reconciler is really implemented.
The key missing ingredient is support for updates.

Introducing Internal Instances

   if (propName !== 'children') {
     node.setAttribute(propName, props[propName]);
   }
 });

 // Mount the children
 children.forEach(childElement => {
   // Children may be host (e.g. <div />) or composite (e.g. <B
   // We will also mount them recursively:
   var childNode = mount(childElement);

   // This line of code is also renderer-specific.
   // It would be different depending on the renderer:
   node.appendChild(childNode);
 });

 // Return the DOM node as mount result.
 // This is where the recursion ends.
 return node;
}

function mount(element) {
 var type = element.type;
 if (typeof type === 'function') {
   // User-defined components
   return mountComposite(element);
 } else if (typeof type === 'string') {
   // Platform-specific components
   return mountHost(element);
 }
}

var rootEl = document.getElementById('root');
var node = mount(<App />);
rootEl.appendChild(node);



The key feature of React is that you can re-render everything, and it won’t
recreate the DOM or reset the state:

However, our implementation above only knows how to mount the initial
tree. It can’t perform updates on it because it doesn’t store all the necessary
information, such as all the publicInstances, or which DOM nodes
correspond to which components.

The stack reconciler codebase solves this by making the mount() function a
method and putting it on a class. There are drawbacks to this approach, and
we are going in the opposite direction in the ongoing rewrite of the
reconciler. Nevertheless this is how it works now.

Instead of separate mountHost and mountComposite functions, we will
create two classes: DOMComponent and CompositeComponent.

Both classes have a constructor accepting the element, as well as a mount()
method returning the mounted node. We will replace a top-level mount()
function with a factory that instantiates the correct class:

First, let’s consider the implementation of CompositeComponent:

root.render(<App />);
// Should reuse the existing DOM:
root.render(<App />);

function instantiateComponent(element) {
 var type = element.type;
 if (typeof type === 'function') {
   // User-defined components
   return new CompositeComponent(element);
 } else if (typeof type === 'string') {
   // Platform-specific components
   return new DOMComponent(element);
 }  
}

class CompositeComponent {
 constructor(element) {
   this.currentElement = element;
   this.renderedComponent = null;



p
   this.publicInstance = null;

 }

 getPublicInstance() {
   // For composite components, expose the class instance.
   return this.publicInstance;
 }

 mount() {
   var element = this.currentElement;
   var type = element.type;
   var props = element.props;

   var publicInstance;
   var renderedElement;
   if (isClass(type)) {
     // Component class
     publicInstance = new type(props);
     // Set the props
     publicInstance.props = props;
     // Call the lifecycle if necessary
     if (publicInstance.componentWillMount) {
       publicInstance.componentWillMount();
     }
     renderedElement = publicInstance.render();
   } else if (typeof type === 'function') {
     // Component function
     publicInstance = null;
     renderedElement = type(props);
   }

   // Save the public instance
   this.publicInstance = publicInstance;

   // Instantiate the child internal instance according to the 
   // It would be a DOMComponent for <div /> or <p />,
   // and a CompositeComponent for <App /> or <Button />:
   var renderedComponent = instantiateComponent(renderedElement
   this.renderedComponent = renderedComponent;

   // Mount the rendered output



This is not much different from our previous mountComposite()

implementation, but now we can save some information, such as 
this.currentElement, this.renderedComponent, and 
this.publicInstance, for use during updates.

Note that an instance of CompositeComponent is not the same thing as an
instance of the user-supplied element.type. CompositeComponent is an
implementation detail of our reconciler, and is never exposed to the user.
The user-defined class is the one we read from element.type, and 
CompositeComponent creates an instance of it.

To avoid the confusion, we will call instances of CompositeComponent and 
DOMComponent “internal instances”. They exist so we can associate some
long-lived data with them. Only the renderer and the reconciler are aware
that they exist.

In contrast, we call an instance of the user-defined class a “public instance”.
The public instance is what you see as this in the render() and other
methods of your custom components.

The mountHost() function, refactored to be a mount() method on 
DOMComponent class, also looks familiar:

   return renderedComponent.mount();

 }
}

class DOMComponent {
 constructor(element) {
   this.currentElement = element;
   this.renderedChildren = [];
   this.node = null;
 }

 getPublicInstance() {
   // For DOM components, only expose the DOM node.
   return this.node;
 }



The main difference after refactoring from mountHost() is that we now
keep this.node and this.renderedChildren associated with the internal
DOM component instance. We will also use them for applying non-
destructive updates in the future.

 mount() {
   var element = this.currentElement;
   var type = element.type;
   var props = element.props;
   var children = props.children || [];
   if (!Array.isArray(children)) {
     children = [children];
   }

   // Create and save the node
   var node = document.createElement(type);
   this.node = node;

   // Set the attributes
   Object.keys(props).forEach(propName => {
     if (propName !== 'children') {
       node.setAttribute(propName, props[propName]);
     }
   });

   // Create and save the contained children.
   // Each of them can be a DOMComponent or a CompositeComponen
   // depending on whether the element type is a string or a fu
   var renderedChildren = children.map(instantiateComponent);
   this.renderedChildren = renderedChildren;

   // Collect DOM nodes they return on mount
   var childNodes = renderedChildren.map(child => child.mount()
   childNodes.forEach(childNode => node.appendChild(childNode))

   // Return the DOM node as mount result
   return node;
 }
}



As a result, each internal instance, composite or host, now points to its child
internal instances. To help visualize this, if a function <App> component
renders a <Button> class component, and Button class renders a <div>, the
internal instance tree would look like this:

In the DOM you would only see the <div>. However the internal instance
tree contains both composite and host internal instances.

The composite internal instances need to store:

The current element.
The public instance if element type is a class.
The single rendered internal instance. It can be either a DOMComponent
or a CompositeComponent.

The host internal instances need to store:

The current element.
The DOM node.
All the child internal instances. Each of them can be either a 
DOMComponent or a CompositeComponent.

If you’re struggling to imagine how an internal instance tree is structured in
more complex applications, React DevTools can give you a close
approximation, as it highlights host instances with grey, and composite
instances with purple:

[object CompositeComponent] {
 currentElement: <App />,
 publicInstance: null,
 renderedComponent: [object CompositeComponent] {
   currentElement: <Button />,
   publicInstance: [object Button],
   renderedComponent: [object DOMComponent] {
     currentElement: <div />,
     node: [object HTMLDivElement],
     renderedChildren: []
   }
 }
}

https://github.com/facebook/react-devtools


To complete this refactoring, we will introduce a function that mounts a
complete tree into a container node and a public instance:

Unmounting

Now that we have internal instances that hold onto their children and the
DOM nodes, we can implement unmounting. For a composite component,
unmounting calls a lifecycle method and recurses.

function mountTree(element, containerNode) {
 // Create the top-level internal instance
 var rootComponent = instantiateComponent(element);

 // Mount the top-level component into the container
 var node = rootComponent.mount();
 containerNode.appendChild(node);

 // Return the public instance it provides
 var publicInstance = rootComponent.getPublicInstance();
 return publicInstance;
}

var rootEl = document.getElementById('root');
mountTree(<App />, rootEl);



For DOMComponent, unmounting tells each child to unmount:

In practice, unmounting DOM components also removes the event listeners
and clears some caches, but we will skip those details.

We can now add a new top-level function called 
unmountTree(containerNode) that is similar to 
ReactDOM.unmountComponentAtNode():

class CompositeComponent {

 // ...

 unmount() {
   // Call the lifecycle method if necessary
   var publicInstance = this.publicInstance;
   if (publicInstance) {
     if (publicInstance.componentWillUnmount) {
       publicInstance.componentWillUnmount();
     }
   }

   // Unmount the single rendered component
   var renderedComponent = this.renderedComponent;
   renderedComponent.unmount();
 }
}

class DOMComponent {

 // ...

 unmount() {
   // Unmount all the children
   var renderedChildren = this.renderedChildren;
   renderedChildren.forEach(child => child.unmount());
 }
}

function unmountTree(containerNode) {
 // Read the internal instance from a DOM node:
// (Thi d 't k t ill d t h tT ()



In order for this to work, we need to read an internal root instance from a
DOM node. We will modify mountTree() to add the _internalInstance
property to the root DOM node. We will also teach mountTree() to destroy
any existing tree so it can be called multiple times:

Now, running unmountTree(), or running mountTree() repeatedly, removes
the old tree and runs the componentWillUnmount() lifecycle method on
components.

Updating

 // (This doesn't work yet, we will need to change mountTree() 
 var node = containerNode.firstChild;
 var rootComponent = node._internalInstance;

 // Unmount the tree and clear the container
 rootComponent.unmount();
 containerNode.innerHTML = '';
}

function mountTree(element, containerNode) {
 // Destroy any existing tree
 if (containerNode.firstChild) {
   unmountTree(containerNode);
 }

 // Create the top-level internal instance
 var rootComponent = instantiateComponent(element);

 // Mount the top-level component into the container
 var node = rootComponent.mount();
 containerNode.appendChild(node);

 // Save a reference to the internal instance
 node._internalInstance = rootComponent;

 // Return the public instance it provides
 var publicInstance = rootComponent.getPublicInstance();
 return publicInstance;
}



In the previous section, we implemented unmounting. However React
wouldn’t be very useful if each prop change unmounted and mounted the
whole tree. The goal of the reconciler is to reuse existing instances where
possible to preserve the DOM and the state:

We will extend our internal instance contract with one more method. In
addition to mount() and unmount(), both DOMComponent and 
CompositeComponent will implement a new method called 
receive(nextElement):

Its job is to do whatever is necessary to bring the component (and any of its
children) up to date with the description provided by the nextElement.

This is the part that is often described as “virtual DOM diffing” although
what really happens is that we walk the internal tree recursively and let each
internal instance receive an update.

var rootEl = document.getElementById('root');

mountTree(<App />, rootEl);
// Should reuse the existing DOM:
mountTree(<App />, rootEl);

class CompositeComponent {
 // ...

 receive(nextElement) {
   // ...
 }
}

class DOMComponent {
 // ...

 receive(nextElement) {
   // ...
 }
}



Updating Composite Components

When a composite component receives a new element, we run the 
componentWillUpdate() lifecycle method.

Then we re-render the component with the new props, and get the next
rendered element:

class CompositeComponent {

 // ...

 receive(nextElement) {
   var prevProps = this.currentElement.props;
   var publicInstance = this.publicInstance;
   var prevRenderedComponent = this.renderedComponent;
   var prevRenderedElement = prevRenderedComponent.currentEleme

   // Update *own* element
   this.currentElement = nextElement;
   var type = nextElement.type;
   var nextProps = nextElement.props;

   // Figure out what the next render() output is
   var nextRenderedElement;
   if (isClass(type)) {
     // Component class
     // Call the lifecycle if necessary
     if (publicInstance.componentWillUpdate) {
       publicInstance.componentWillUpdate(nextProps);
     }
     // Update the props
     publicInstance.props = nextProps;
     // Re-render
     nextRenderedElement = publicInstance.render();
   } else if (typeof type === 'function') {
     // Component function
     nextRenderedElement = type(nextProps);
   }

   // ...



Next, we can look at the rendered element’s type. If the type has not
changed since the last render, the component below can also be updated in
place.

For example, if it returned <Button color="red" /> the first time, and 
<Button color="blue" /> the second time, we can just tell the
corresponding internal instance to receive() the next element:

However, if the next rendered element has a different type than the
previously rendered element, we can’t update the internal instance. A 
<button> can’t “become” an <input>.

Instead, we have to unmount the existing internal instance and mount the
new one corresponding to the rendered element type. For example, this is
what happens when a component that previously rendered a <button />
renders an <input />:

   // ...

   // If the rendered element type has not changed,
   // reuse the existing component instance and exit.
   if (prevRenderedElement.type === nextRenderedElement.type) {
     prevRenderedComponent.receive(nextRenderedElement);
     return;
   }

   // ...

   // ...

   // If we reached this point, we need to unmount the previous
   // mounted component, mount the new one, and swap their node

   // Find the old node because it will need to be replaced
   var prevNode = prevRenderedComponent.getHostNode();

   // Unmount the old child and mount a new child



To sum this up, when a composite component receives a new element, it
may either delegate the update to its rendered internal instance, or unmount
it and mount a new one in its place.

There is another condition under which a component will re-mount rather
than receive an element, and that is when the element’s key has changed.
We don’t discuss key handling in this document because it adds more
complexity to an already complex tutorial.

Note that we needed to add a method called getHostNode() to the internal
instance contract so that it’s possible to locate the platform-specific node
and replace it during the update. Its implementation is straightforward for
both classes:

   prevRenderedComponent.unmount();
   var nextRenderedComponent = instantiateComponent(nextRendere
   var nextNode = nextRenderedComponent.mount();

   // Replace the reference to the child
   this.renderedComponent = nextRenderedComponent;

   // Replace the old node with the new one
   // Note: this is renderer-specific code and
   // ideally should live outside of CompositeComponent:
   prevNode.parentNode.replaceChild(nextNode, prevNode);
 }
}

class CompositeComponent {
 // ...

 getHostNode() {
   // Ask the rendered component to provide it.
   // This will recursively drill down any composites.
   return this.renderedComponent.getHostNode();
 }
}

class DOMComponent {



Updating Host Components

Host component implementations, such as DOMComponent, update
differently. When they receive an element, they need to update the
underlying platform-specific view. In case of React DOM, this means
updating the DOM attributes:

 // ...

 getHostNode() {
   return this.node;
 }  
}

class DOMComponent {
 // ...

 receive(nextElement) {
   var node = this.node;
   var prevElement = this.currentElement;
   var prevProps = prevElement.props;
   var nextProps = nextElement.props;    
   this.currentElement = nextElement;

   // Remove old attributes.
   Object.keys(prevProps).forEach(propName => {
     if (propName !== 'children' && !nextProps.hasOwnProperty(p
       node.removeAttribute(propName);
     }
   });
   // Set next attributes.
   Object.keys(nextProps).forEach(propName => {
     if (propName !== 'children') {
       node.setAttribute(propName, nextProps[propName]);
     }
   });

   // ...



Then, host components need to update their children. Unlike composite
components, they might contain more than a single child.

In this simplified example, we use an array of internal instances and iterate
over it, either updating or replacing the internal instances depending on
whether the received type matches their previous type. The real reconciler
also takes element’s key in the account and track moves in addition to
insertions and deletions, but we will omit this logic.

We collect DOM operations on children in a list so we can execute them in
batch:

   // ...

   // These are arrays of React elements:
   var prevChildren = prevProps.children || [];
   if (!Array.isArray(prevChildren)) {
     prevChildren = [prevChildren];
   }
   var nextChildren = nextProps.children || [];
   if (!Array.isArray(nextChildren)) {
     nextChildren = [nextChildren];
   }
   // These are arrays of internal instances:
   var prevRenderedChildren = this.renderedChildren;
   var nextRenderedChildren = [];

   // As we iterate over children, we will add operations to th
   var operationQueue = [];

   // Note: the section below is extremely simplified!
   // It doesn't handle reorders, children with holes, or keys.
   // It only exists to illustrate the overall flow, not the sp

   for (var i = 0; i < nextChildren.length; i++) {

     // Try to get an existing internal instance for this child
     var prevChild = prevRenderedChildren[i];

     // If there is no internal instance under this index,
     // a child has been appended to the end. Create a new

// internal instance, mount it, and use its node



     // internal instance, mount it, and use its node.
     if (!prevChild) {
       var nextChild = instantiateComponent(nextChildren[i]);
       var node = nextChild.mount();

       // Record that we need to append a node
       operationQueue.push({type: 'ADD', node});
       nextRenderedChildren.push(nextChild);
       continue;
     }

     // We can only update the instance if its element's type m
     // For example, <Button size="small" /> can be updated to
     // <Button size="large" /> but not to an <App />.
     var canUpdate = prevChildren[i].type === nextChildren[i].t

     // If we can't update an existing instance, we have to unm
     // and mount a new one instead of it.
     if (!canUpdate) {
       var prevNode = prevChild.getHostNode();
       prevChild.unmount();

       var nextChild = instantiateComponent(nextChildren[i]);
       var nextNode = nextChild.mount();

       // Record that we need to swap the nodes
       operationQueue.push({type: 'REPLACE', prevNode, nextNode
       nextRenderedChildren.push(nextChild);
       continue;
     }

     // If we can update an existing internal instance,
     // just let it receive the next element and handle its own
     prevChild.receive(nextChildren[i]);
     nextRenderedChildren.push(prevChild);
   }

   // Finally, unmount any children that don't exist:
   for (var j = nextChildren.length; j < prevChildren.length; j
     var prevChild = prevRenderedChildren[j];
     var node = prevChild.getHostNode();

prevChild unmount();



As the last step, we execute the DOM operations. Again, the real reconciler
code is more complex because it also handles moves:

And that is it for updating host components.

Top-Level Updates

     prevChild.unmount();

     // Record that we need to remove the node
     operationQueue.push({type: 'REMOVE', node});
   }

   // Point the list of rendered children to the updated versio
   this.renderedChildren = nextRenderedChildren;

   // ...

   // ...

   // Process the operation queue.
   while (operationQueue.length > 0) {
     var operation = operationQueue.shift();
     switch (operation.type) {
     case 'ADD':
       this.node.appendChild(operation.node);
       break;
     case 'REPLACE':
       this.node.replaceChild(operation.nextNode, operation.pre
       break;
     case 'REMOVE':
       this.node.removeChild(operation.node);
       break;
     }
   }
 }
}



Now that both CompositeComponent and DOMComponent implement the 
receive(nextElement) method, we can change the top-level mountTree()
function to use it when the element type is the same as it was the last time:

Now calling mountTree() two times with the same type isn’t destructive:

These are the basics of how React works internally.

What We Left Out

This document is simplified compared to the real codebase. There are a few
important aspects we didn’t address:

function mountTree(element, containerNode) {
 // Check for an existing tree
 if (containerNode.firstChild) {
   var prevNode = containerNode.firstChild;
   var prevRootComponent = prevNode._internalInstance;
   var prevElement = prevRootComponent.currentElement;

   // If we can, reuse the existing root component
   if (prevElement.type === element.type) {
     prevRootComponent.receive(element);
     return;
   }

   // Otherwise, unmount the existing tree
   unmountTree(containerNode);
 }

 // ...

}

var rootEl = document.getElementById('root');

mountTree(<App />, rootEl);
// Reuses the existing DOM:
mountTree(<App />, rootEl);



Components can render null, and the reconciler can handle “empty
slots” in arrays and rendered output.

The reconciler also reads key from the elements, and uses it to
establish which internal instance corresponds to which element in an
array. A bulk of complexity in the actual React implementation is
related to that.

In addition to composite and host internal instance classes, there are
also classes for “text” and “empty” components. They represent text
nodes and the “empty slots” you get by rendering null.

Renderers use injection to pass the host internal class to the reconciler.
For example, React DOM tells the reconciler to use 
ReactDOMComponent as the host internal instance implementation.

The logic for updating the list of children is extracted into a mixin
called ReactMultiChild which is used by the host internal instance
class implementations both in React DOM and React Native.

The reconciler also implements support for setState() in composite
components. Multiple updates inside event handlers get batched into a
single update.

The reconciler also takes care of attaching and detaching refs to
composite components and host nodes.

Lifecycle methods that are called after the DOM is ready, such as 
componentDidMount() and componentDidUpdate(), get collected into
“callback queues” and are executed in a single batch.

React puts information about the current update into an internal object
called “transaction”. Transactions are useful for keeping track of the
queue of pending lifecycle methods, the current DOM nesting for the
warnings, and anything else that is “global” to a specific update.
Transactions also ensure React “cleans everything up” after updates.
For example, the transaction class provided by React DOM restores
the input selection after any update.



Jumping into the Code

ReactMount is where the code like mountTree() and unmountTree()
from this tutorial lives. It takes care of mounting and unmounting top-
level components. ReactNativeMount is its React Native analog.

ReactDOMComponent is the equivalent of DOMComponent in this tutorial.
It implements the host component class for React DOM renderer. 
ReactNativeBaseComponent is its React Native analog.

ReactCompositeComponent is the equivalent of CompositeComponent
in this tutorial. It handles calling user-defined components and
maintaining their state.

instantiateReactComponent contains the switch that picks the right
internal instance class to construct for an element. It is equivalent to 
instantiateComponent() in this tutorial.

ReactReconciler is a wrapper with mountComponent(), 
receiveComponent(), and unmountComponent() methods. It calls the
underlying implementations on the internal instances, but also includes
some code around them that is shared by all internal instance
implementations.

ReactChildReconciler implements the logic for mounting, updating,
and unmounting children according to the key of their elements.

ReactMultiChild implements processing the operation queue for child
insertions, deletions, and moves independently of the renderer.

mount(), receive(), and unmount() are really called 
mountComponent(), receiveComponent(), and unmountComponent()
in React codebase for legacy reasons, but they receive elements.

Properties on the internal instances start with an underscore,
e.g. _currentElement. They are considered to be read-only public
fields throughout the codebase.

https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/dom/client/ReactMount.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/native/ReactNativeMount.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/dom/shared/ReactDOMComponent.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/native/ReactNativeBaseComponent.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/shared/stack/reconciler/ReactCompositeComponent.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/shared/stack/reconciler/instantiateReactComponent.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/shared/stack/reconciler/ReactReconciler.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/shared/stack/reconciler/ReactChildReconciler.js
https://github.com/facebook/react/blob/83381c1673d14cd16cf747e34c945291e5518a86/src/renderers/shared/stack/reconciler/ReactMultiChild.js


Future Directions

Stack reconciler has inherent limitations such as being synchronous and
unable to interrupt the work or split it in chunks. There is a work in
progress on the new Fiber reconciler with a completely different
architecture. In the future, we intend to replace stack reconciler with it, but
at the moment it is far from feature parity.

Next Steps

Read the next section to learn about the guiding principles we use for React
development.

Design Principles

We wrote this document so that you have a better idea of how we decide
what React does and what React doesn’t do, and what our development
philosophy is like. While we are excited to see community contributions,
we are not likely to choose a path that violates one or more of these
principles.

Note:

This document assumes a strong understanding of React. It describes
the design principles of React itself, not React components or
applications.

For an introduction to React, check out Thinking in React instead.

Composition

The key feature of React is composition of components. Components
written by different people should work well together. It is important to us
that you can add functionality to a component without causing rippling
changes throughout the codebase.

https://github.com/acdlite/react-fiber-architecture


For example, it should be possible to introduce some local state into a
component without changing any of the components using it. Similarly, it
should be possible to add some initialization and teardown code to any
component when necessary.

There is nothing “bad” about using state or lifecycle methods in
components. Like any powerful feature, they should be used in moderation,
but we have no intention to remove them. On the contrary, we think they
are integral parts of what makes React useful. We might enable more
functional patterns in the future, but both local state and lifecycle methods
will be a part of that model.

Components are often described as “just functions” but in our view they
need to be more than that to be useful. In React, components describe any
composable behavior, and this includes rendering, lifecycle, and state. Some
external libraries like Relay augment components with other responsibilities
such as describing data dependencies. It is possible that those ideas might
make it back into React too in some form.

Common Abstraction

In general we resist adding features that can be implemented in userland.
We don’t want to bloat your apps with useless library code. However, there
are exceptions to this.

For example, if React didn’t provide support for local state or lifecycle
methods, people would create custom abstractions for them. When there are
multiple abstractions competing, React can’t enforce or take advantage of
the properties of either of them. It has to work with the lowest common
denominator.

This is why sometimes we add features to React itself. If we notice that
many components implement a certain feature in incompatible or inefficient
ways, we might prefer to bake it into React. We don’t do it lightly. When
we do it, it’s because we are confident that raising the abstraction level
benefits the whole ecosystem. State, lifecycle methods, cross-browser event
normalization are good examples of this.

https://github.com/reactjs/react-future/tree/master/07%20-%20Returning%20State
https://facebook.github.io/relay/
https://www.youtube.com/watch?v=4anAwXYqLG8


We always discuss such improvement proposals with the community. You
can find some of those discussions by the “big picture” label on the React
issue tracker.

Escape Hatches

React is pragmatic. It is driven by the needs of the products written at
Facebook. While it is influenced by some paradigms that are not yet fully
mainstream such as functional programming, staying accessible to a wide
range of developers with different skills and experience levels is an explicit
goal of the project.

If we want to deprecate a pattern that we don’t like, it is our responsibility
to consider all existing use cases for it and educate the community about the
alternatives before we deprecate it. If some pattern that is useful for
building apps is hard to express in a declarative way, we will provide an
imperative API for it. If we can’t figure out a perfect API for something that
we found necessary in many apps, we will provide a temporary subpar
working API as long as it is possible to get rid of it later and it leaves the
door open for future improvements.

Stability

We value API stability. At Facebook, we have more than 50 thousand
components using React. Many other companies, including Twitter and
Airbnb, are also heavy users of React. This is why we are usually reluctant
to change public APIs or behavior.

However we think stability in the sense of “nothing changes” is overrated.
It quickly turns into stagnation. Instead, we prefer the stability in the sense
of “It is heavily used in production, and when something changes, there is a
clear (and preferably automated) migration path.”

When we deprecate a pattern, we study its internal usage at Facebook and
add deprecation warnings. They let us assess the impact of the change.
Sometimes we back out if we see that it is too early, and we need to think

https://github.com/facebook/react/issues?q=is:open+is:issue+label:%22Type:+Big+Picture%22
file:///C:/blog/2016/07/13/mixins-considered-harmful.html
file:///C:/docs/more-about-refs.html
file:///C:/docs/legacy-context.html
https://twitter.com/
https://www.airbnb.com/


more strategically about getting the codebases to the point where they are
ready for this change.

If we are confident that the change is not too disruptive and the migration
strategy is viable for all use cases, we release the deprecation warning to the
open source community. We are closely in touch with many users of React
outside of Facebook, and we monitor popular open source projects and
guide them in fixing those deprecations.

Given the sheer size of the Facebook React codebase, successful internal
migration is often a good indicator that other companies won’t have
problems either. Nevertheless sometimes people point out additional use
cases we haven’t thought of, and we add escape hatches for them or rethink
our approach.

We don’t deprecate anything without a good reason. We recognize that
sometimes deprecations warnings cause frustration but we add them
because deprecations clean up the road for the improvements and new
features that we and many people in the community consider valuable.

For example, we added a warning about unknown DOM props in React
15.2.0. Many projects were affected by this. However fixing this warning is
important so that we can introduce the support for custom attributes to
React. There is a reason like this behind every deprecation that we add.

When we add a deprecation warning, we keep it for the rest of the current
major version, and change the behavior in the next major version. If there is
a lot of repetitive manual work involved, we release a codemod script that
automates most of the change. Codemods enable us to move forward
without stagnation in a massive codebase, and we encourage you to use
them as well.

You can find the codemods that we released in the react-codemod
repository.

Interoperability

file:///C:/warnings/unknown-prop.html
https://github.com/facebook/react/issues/140
file:///C:/blog/2016/02/19/new-versioning-scheme.html
https://www.youtube.com/watch?v=d0pOgY8__JM
https://github.com/reactjs/react-codemod


We place high value in interoperability with existing systems and gradual
adoption. Facebook has a massive non-React codebase. Its website uses a
mix of a server-side component system called XHP, internal UI libraries
that came before React, and React itself. It is important to us that any
product team can start using React for a small feature rather than rewrite
their code to bet on it.

This is why React provides escape hatches to work with mutable models,
and tries to work well together with other UI libraries. You can wrap an
existing imperative UI into a declarative component, and vice versa. This is
crucial for gradual adoption.

Scheduling

Even when your components are described as functions, when you use
React you don’t call them directly. Every component returns a description
of what needs to be rendered, and that description may include both user-
written components like <LikeButton> and platform-specific components
like <div>. It is up to React to “unroll” <LikeButton> at some point in the
future and actually apply changes to the UI tree according to the render
results of the components recursively.

This is a subtle distinction but a powerful one. Since you don’t call that
component function but let React call it, it means React has the power to
delay calling it if necessary. In its current implementation React walks the
tree recursively and calls render functions of the whole updated tree during
a single tick. However in the future it might start delaying some updates to
avoid dropping frames.

This is a common theme in React design. Some popular libraries implement
the “push” approach where computations are performed when the new data
is available. React, however, sticks to the “pull” approach where
computations can be delayed until necessary.

React is not a generic data processing library. It is a library for building user
interfaces. We think that it is uniquely positioned in an app to know which
computations are relevant right now and which are not.

https://www.youtube.com/watch?v=BF58ZJ1ZQxY
file:///C:/blog/2015/12/18/react-components-elements-and-instances.html#elements-describe-the-tree
https://github.com/facebook/react/issues/6170


If something is offscreen, we can delay any logic related to it. If data is
arriving faster than the frame rate, we can coalesce and batch updates. We
can prioritize work coming from user interactions (such as an animation
caused by a button click) over less important background work (such as
rendering new content just loaded from the network) to avoid dropping
frames.

To be clear, we are not taking advantage of this right now. However the
freedom to do something like this is why we prefer to have control over
scheduling, and why setState() is asynchronous. Conceptually, we think
of it as “scheduling an update”.

The control over scheduling would be harder for us to gain if we let the user
directly compose views with a “push” based paradigm common in some
variations of Functional Reactive Programming. We want to own the “glue”
code.

It is a key goal for React that the amount of the user code that executes
before yielding back into React is minimal. This ensures that React retains
the capability to schedule and split work in chunks according to what it
knows about the UI.

There is an internal joke in the team that React should have been called
“Schedule” because React does not want to be fully “reactive”.

Developer Experience

Providing a good developer experience is important to us.

For example, we maintain React DevTools which let you inspect the React
component tree in Chrome and Firefox. We have heard that it brings a big
productivity boost both to the Facebook engineers and to the community.

We also try to go an extra mile to provide helpful developer warnings. For
example, React warns you in development if you nest tags in a way that the
browser doesn’t understand, or if you make a common typo in the API.
Developer warnings and the related checks are the main reason why the
development version of React is slower than the production version.

https://en.wikipedia.org/wiki/Functional_reactive_programming
https://github.com/facebook/react/tree/main/packages/react-devtools


The usage patterns that we see internally at Facebook help us understand
what the common mistakes are, and how to prevent them early. When we
add new features, we try to anticipate the common mistakes and warn about
them.

We are always looking out for ways to improve the developer experience.
We love to hear your suggestions and accept your contributions to make it
even better.

Debugging

When something goes wrong, it is important that you have breadcrumbs to
trace the mistake to its source in the codebase. In React, props and state are
those breadcrumbs.

If you see something wrong on the screen, you can open React DevTools,
find the component responsible for rendering, and then see if the props and
state are correct. If they are, you know that the problem is in the
component’s render() function, or some function that is called by 
render(). The problem is isolated.

If the state is wrong, you know that the problem is caused by one of the 
setState() calls in this file. This, too, is relatively simple to locate and fix
because usually there are only a few setState() calls in a single file.

If the props are wrong, you can traverse the tree up in the inspector, looking
for the component that first “poisoned the well” by passing bad props down.

This ability to trace any UI to the data that produced it in the form of
current props and state is very important to React. It is an explicit design
goal that state is not “trapped” in closures and combinators, and is available
to React directly.

While the UI is dynamic, we believe that synchronous render() functions
of props and state turn debugging from guesswork into a boring but finite
procedure. We would like to preserve this constraint in React even though it
makes some use cases, like complex animations, harder.



Configuration

We find global runtime configuration options to be problematic.

For example, it is occasionally requested that we implement a function like 
React.configure(options) or React.register(component). However
this poses multiple problems, and we are not aware of good solutions to
them.

What if somebody calls such a function from a third-party component
library? What if one React app embeds another React app, and their desired
configurations are incompatible? How can a third-party component specify
that it requires a particular configuration? We think that global
configuration doesn’t work well with composition. Since composition is
central to React, we don’t provide global configuration in code.

We do, however, provide some global configuration on the build level. For
example, we provide separate development and production builds. We may
also add a profiling build in the future, and we are open to considering other
build flags.

Beyond the DOM

We see the value of React in the way it allows us to write components that
have fewer bugs and compose together well. DOM is the original rendering
target for React but React Native is just as important both to Facebook and
the community.

Being renderer-agnostic is an important design constraint of React. It adds
some overhead in the internal representations. On the other hand, any
improvements to the core translate across platforms.

Having a single programming model lets us form engineering teams around
products instead of platforms. So far the tradeoff has been worth it for us.

Implementation

https://github.com/facebook/react/issues/6627
https://reactnative.dev/


We try to provide elegant APIs where possible. We are much less concerned
with the implementation being elegant. The real world is far from perfect,
and to a reasonable extent we prefer to put the ugly code into the library if it
means the user does not have to write it. When we evaluate new code, we
are looking for an implementation that is correct, performant and affords a
good developer experience. Elegance is secondary.

We prefer boring code to clever code. Code is disposable and often changes.
So it is important that it doesn’t introduce new internal abstractions unless
absolutely necessary. Verbose code that is easy to move around, change and
remove is preferred to elegant code that is prematurely abstracted and hard
to change.

Optimized for Tooling

Some commonly used APIs have verbose names. For example, we use 
componentDidMount() instead of didMount() or onMount(). This is
intentional. The goal is to make the points of interaction with the library
highly visible.

In a massive codebase like Facebook, being able to search for uses of
specific APIs is very important. We value distinct verbose names, and
especially for the features that should be used sparingly. For example, 
dangerouslySetInnerHTML is hard to miss in a code review.

Optimizing for search is also important because of our reliance on
codemods to make breaking changes. We want it to be easy and safe to
apply vast automated changes across the codebase, and unique verbose
names help us achieve this. Similarly, distinctive names make it easy to
write custom lint rules about using React without worrying about potential
false positives.

JSX plays a similar role. While it is not required with React, we use it
extensively at Facebook both for aesthetic and pragmatic reasons.

In our codebase, JSX provides an unambiguous hint to the tools that they
are dealing with a React element tree. This makes it possible to add build-

https://youtu.be/4anAwXYqLG8?t=13m9s
https://github.com/reactjs/react-future/issues/40#issuecomment-142442124
https://www.youtube.com/watch?v=d0pOgY8__JM
https://github.com/yannickcr/eslint-plugin-react


time optimizations such as hoisting constant elements, safely lint and
codemod internal component usage, and include JSX source location into
the warnings.

Dogfooding

We try our best to address the problems raised by the community. However
we are likely to prioritize the issues that people are also experiencing
internally at Facebook. Perhaps counter-intuitively, we think this is the main
reason why the community can bet on React.

Heavy internal usage gives us the confidence that React won’t disappear
tomorrow. React was created at Facebook to solve its problems. It brings
tangible business value to the company and is used in many of its products.
Dogfooding it means that our vision stays sharp and we have a focused
direction going forward.

This doesn’t mean that we ignore the issues raised by the community. For
example, we added support for web components and SVG to React even
though we don’t rely on either of them internally. We are actively listening
to your pain points and address them to the best of our ability. The
community is what makes React special to us, and we are honored to
contribute back.

After releasing many open source projects at Facebook, we have learned
that trying to make everyone happy at the same time produced projects with
poor focus that didn’t grow well. Instead, we found that picking a small
audience and focusing on making them happy brings a positive net effect.
That’s exactly what we did with React, and so far solving the problems
encountered by Facebook product teams has translated well to the open
source community.

The downside of this approach is that sometimes we fail to give enough
focus to the things that Facebook teams don’t have to deal with, such as the
“getting started” experience. We are acutely aware of this, and we are
thinking of how to improve in a way that would benefit everyone in the

https://babeljs.io/docs/en/babel-plugin-transform-react-constant-elements/
https://github.com/facebook/react/pull/6771
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
file:///C:/docs/webcomponents.html
https://github.com/facebook/react/pull/6243
https://github.com/facebook/react/issues/2686
file:///C:/blog/2016/07/11/introducing-reacts-error-code-system.html


community without making the same mistakes we did with open source
projects before.



FAQ
AJAX and APIs

How can I make an AJAX call?

You can use any AJAX library you like with React. Some popular ones are
Axios, jQuery AJAX, and the browser built-in window.fetch.

Where in the component lifecycle should I make an AJAX call?

You should populate data with AJAX calls in the componentDidMount
lifecycle method. This is so you can use setState to update your
component when the data is retrieved.

Example: Using AJAX results to set local state

The component below demonstrates how to make an AJAX call in 
componentDidMount to populate local component state.

The example API returns a JSON object like this:

{ 
  "items": [ 
    { "id": 1, "name": "Apples",  "price": "$2" }, 
    { "id": 2, "name": "Peaches", "price": "$5" } 
  ]  
}

class MyComponent extends React.Component {
 constructor(props) {
   super(props);
   this.state = {
     error: null,
     isLoaded: false,
     items: []

https://github.com/axios/axios
https://api.jquery.com/jQuery.ajax/
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API


   };
 }

 componentDidMount() {
   fetch("https://api.example.com/items")
     .then(res => res.json())
     .then(
       (result) => {
         this.setState({
           isLoaded: true,
           items: result.items
         });
       },
       // Note: it's important to handle errors here
       // instead of a catch() block so that we don't swallow
       // exceptions from actual bugs in components.
       (error) => {
         this.setState({
           isLoaded: true,
           error
         });
       }
     )
 }

 render() {
   const { error, isLoaded, items } = this.state;
   if (error) {
     return <div>Error: {error.message}</div>;
   } else if (!isLoaded) {
     return <div>Loading...</div>;
   } else {
     return (
       <ul>
         {items.map(item => (
           <li key={item.id}>
             {item.name} {item.price}
           </li>
         ))}
       </ul>
     );
   }



Here is the equivalent with Hooks:

 }
}

function MyComponent() {
 const [error, setError] = useState(null);
 const [isLoaded, setIsLoaded] = useState(false);
 const [items, setItems] = useState([]);

 // Note: the empty deps array [] means
 // this useEffect will run once
 // similar to componentDidMount()
 useEffect(() => {
   fetch("https://api.example.com/items")
     .then(res => res.json())
     .then(
       (result) => {
         setIsLoaded(true);
         setItems(result);
       },
       // Note: it's important to handle errors here
       // instead of a catch() block so that we don't swallow
       // exceptions from actual bugs in components.
       (error) => {
         setIsLoaded(true);
         setError(error);
       }
     )
 }, [])

 if (error) {
   return <div>Error: {error.message}</div>;
 } else if (!isLoaded) {
   return <div>Loading...</div>;
 } else {
   return (
     <ul>
       {items.map(item => (
         <li key={item.id}>
           {item.name} {item.price}
         </li>

https://reactjs.org/docs/hooks-intro.html


Babel, JSX, and Build Steps

Do I need to use JSX with React?

No! Check out “React Without JSX” to learn more.

Do I need to use ES6 (+) with React?

No! Check out “React Without ES6” to learn more.

How can I write comments in JSX?

Passing Functions to Components

How do I pass an event handler (like onClick) to a component?

Pass event handlers and other functions as props to child components:

       ))}
     </ul>
   );
 }
}

<div>
 {/* Comment goes here */}
 Hello, {name}!
</div>

<div>
 {/* It also works 
 for multi-line comments. */}
 Hello, {name}! 
</div>

<button onClick={this.handleClick}>



If you need to have access to the parent component in the handler, you also
need to bind the function to the component instance (see below).

How do I bind a function to a component instance?

There are several ways to make sure functions have access to component
attributes like this.props and this.state, depending on which syntax and
build steps you are using.

Bind in Constructor (ES2015)

Class Properties (ES2022)

Bind in Render

class Foo extends Component {
 constructor(props) {
   super(props);
   this.handleClick = this.handleClick.bind(this);
 }
 handleClick() {
   console.log('Click happened');
 }
 render() {
   return <button onClick={this.handleClick}>Click Me</button>;
 }
}

class Foo extends Component {
 handleClick = () => {
   console.log('Click happened');
 };
 render() {
   return <button onClick={this.handleClick}>Click Me</button>;
 }
}

class Foo extends Component {
 handleClick() {



Note:

Using Function.prototype.bind in render creates a new function
each time the component renders, which may have performance
implications (see below).

Arrow Function in Render

Note:

Using an arrow function in render creates a new function each time the
component renders, which may break optimizations based on strict
identity comparison.

Is it OK to use arrow functions in render methods?

Generally speaking, yes, it is OK, and it is often the easiest way to pass
parameters to callback functions.

If you do have performance issues, by all means, optimize!

Why is binding necessary at all?

   console.log('Click happened');
 }
 render() {
   return <button onClick={this.handleClick.bind(this)}>Click M
 }
}

class Foo extends Component {
 handleClick() {
   console.log('Click happened');
 }
 render() {
   return <button onClick={() => this.handleClick()}>Click Me</
 }
}



In JavaScript, these two code snippets are not equivalent:

Binding methods helps ensure that the second snippet works the same way
as the first one.

With React, typically you only need to bind the methods you pass to other
components. For example, <button onClick={this.handleClick}> passes
this.handleClick so you want to bind it. However, it is unnecessary to
bind the render method or the lifecycle methods: we don’t pass them to
other components.

This post by Yehuda Katz explains what binding is, and how functions work
in JavaScript, in detail.

Why is my function being called every time the component renders?

Make sure you aren’t calling the function when you pass it to the
component:

Instead, pass the function itself (without parens):

How do I pass a parameter to an event handler or callback?

obj.method();

var method = obj.method;
method();

render() {
 // Wrong: handleClick is called instead of passed as a referen
 return <button onClick={this.handleClick()}>Click Me</button>
}

render() {
 // Correct: handleClick is passed as a reference!
 return <button onClick={this.handleClick}>Click Me</button>
}

https://yehudakatz.com/2011/08/11/understanding-javascript-function-invocation-and-this/


You can use an arrow function to wrap around an event handler and pass
parameters:

This is equivalent to calling .bind:

Example: Passing params using arrow functions

Example: Passing params using data-attributes

<button onClick={() => this.handleClick(id)} />

<button onClick={this.handleClick.bind(this, id)} />

const A = 65 // ASCII character code

class Alphabet extends React.Component {
 constructor(props) {
   super(props);
   this.state = {
     justClicked: null,
     letters: Array.from({length: 26}, (_, i) => String.fromCha
   };
 }
 handleClick(letter) {
   this.setState({ justClicked: letter });
 }
 render() {
   return (
     <div>
       Just clicked: {this.state.justClicked}
       <ul>
         {this.state.letters.map(letter =>
           <li key={letter} onClick={() => this.handleClick(let
             {letter}
           </li>
         )}
       </ul>
     </div>
   )
 }
}



Alternately, you can use DOM APIs to store data needed for event handlers.
Consider this approach if you need to optimize a large number of elements
or have a render tree that relies on React.PureComponent equality checks.

const A = 65 // ASCII character code

class Alphabet extends React.Component {
 constructor(props) {
   super(props);
   this.handleClick = this.handleClick.bind(this);
   this.state = {
     justClicked: null,
     letters: Array.from({length: 26}, (_, i) => String.fromCha
   };
 }

 handleClick(e) {
   this.setState({
     justClicked: e.target.dataset.letter
   });
 }

 render() {
   return (
     <div>
       Just clicked: {this.state.justClicked}
       <ul>
         {this.state.letters.map(letter =>
           <li key={letter} data-letter={letter} onClick={this.
             {letter}
           </li>
         )}
       </ul>
     </div>
   )

 }
}



How can I prevent a function from being called too quickly or too
many times in a row?

If you have an event handler such as onClick or onScroll and want to
prevent the callback from being fired too quickly, then you can limit the rate
at which callback is executed. This can be done by using:

throttling: sample changes based on a time based frequency (eg 
_.throttle)
debouncing: publish changes after a period of inactivity (eg 
_.debounce)
requestAnimationFrame throttling: sample changes based on 
requestAnimationFrame (eg raf-schd)

See this visualization for a comparison of throttle and debounce

functions.

Note:

_.debounce, _.throttle and raf-schd provide a cancel method to
cancel delayed callbacks. You should either call this method from 
componentWillUnmount or check to ensure that the component is still
mounted within the delayed function.

Throttle

Throttling prevents a function from being called more than once in a given
window of time. The example below throttles a “click” handler to prevent
calling it more than once per second.

import throttle from 'lodash.throttle';

class LoadMoreButton extends React.Component {
 constructor(props) {
   super(props);
   this.handleClick = this.handleClick.bind(this);
   this.handleClickThrottled = throttle(this.handleClick, 1000)
 }

https://lodash.com/docs#throttle
https://lodash.com/docs#debounce
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://github.com/alexreardon/raf-schd
http://demo.nimius.net/debounce_throttle/


Debounce

Debouncing ensures that a function will not be executed until after a certain
amount of time has passed since it was last called. This can be useful when
you have to perform some expensive calculation in response to an event
that might dispatch rapidly (eg scroll or keyboard events). The example
below debounces text input with a 250ms delay.

 componentWillUnmount() {
   this.handleClickThrottled.cancel();
 }

 render() {
   return <button onClick={this.handleClickThrottled}>Load More
 }

 handleClick() {
   this.props.loadMore();
 }
}

import debounce from 'lodash.debounce';

class Searchbox extends React.Component {
 constructor(props) {
   super(props);
   this.handleChange = this.handleChange.bind(this);
   this.emitChangeDebounced = debounce(this.emitChange, 250);
 }

 componentWillUnmount() {
   this.emitChangeDebounced.cancel();
 }

 render() {
   return (
     <input
       type="text"



requestAnimationFrame throttling

requestAnimationFrame is a way of queuing a function to be executed in
the browser at the optimal time for rendering performance. A function that
is queued with requestAnimationFrame will fire in the next frame. The
browser will work hard to ensure that there are 60 frames per second (60
fps). However, if the browser is unable to it will naturally limit the amount
of frames in a second. For example, a device might only be able to handle
30 fps and so you will only get 30 frames in that second. Using 
requestAnimationFrame for throttling is a useful technique in that it
prevents you from doing more than 60 updates in a second. If you are doing
100 updates in a second this creates additional work for the browser that the
user will not see anyway.

Note:

Using this technique will only capture the last published value in a
frame. You can see an example of how this optimization works on MDN

       onChange={this.handleChange}
       placeholder="Search..."
       defaultValue={this.props.value}
     />
   );
 }

 handleChange(e) {
   this.emitChangeDebounced(e.target.value);
 }

 emitChange(value) {
   this.props.onChange(value);
 }
}

import rafSchedule from 'raf-schd';

class ScrollListener extends React.Component {
 constructor(props) {
   super(props);

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://developer.mozilla.org/en-US/docs/Web/Events/scroll


Testing your rate limiting

When testing your rate limiting code works correctly it is helpful to have
the ability to fast forward time. If you are using jest then you can use mock 
timers to fast forward time. If you are using requestAnimationFrame
throttling then you may find raf-stub to be a useful tool to control the
ticking of animation frames.

   this.handleScroll = this.handleScroll.bind(this);

   // Create a new function to schedule updates.
   this.scheduleUpdate = rafSchedule(
     point => this.props.onScroll(point)
   );
 }

 handleScroll(e) {
   // When we receive a scroll event, schedule an update.
   // If we receive many updates within a frame, we'll only pub
   this.scheduleUpdate({ x: e.clientX, y: e.clientY });
 }

 componentWillUnmount() {
   // Cancel any pending updates since we're unmounting.
   this.scheduleUpdate.cancel();
 }

 render() {
   return (
     <div
       style={{ overflow: 'scroll' }}
       onScroll={this.handleScroll}
     >
       <img src="/my-huge-image.jpg" />
     </div>
   );
 }
}

https://facebook.github.io/jest/
https://facebook.github.io/jest/docs/en/timer-mocks.html
https://github.com/alexreardon/raf-stub


Component State

What does setState do?

setState() schedules an update to a component’s state object. When state
changes, the component responds by re-rendering.

What is the difference between state and props?

props (short for “properties”) and state are both plain JavaScript objects.
While both hold information that influences the output of render, they are
different in one important way: props get passed to the component (similar
to function parameters) whereas state is managed within the component
(similar to variables declared within a function).

Here are some good resources for further reading on when to use props vs 
state: * Props vs State * ReactJS: Props vs. State

Why is setState giving me the wrong value?

In React, both this.props and this.state represent the rendered values,
i.e. what’s currently on the screen.

Calls to setState are asynchronous - don’t rely on this.state to reflect
the new value immediately after calling setState. Pass an updater function
instead of an object if you need to compute values based on the current state
(see below for details).

Example of code that will not behave as expected:

incrementCount() {
 // Note: this will *not* work as intended.
 this.setState({count: this.state.count + 1});
}

handleSomething() {
 // Let's say `this.state.count` starts at 0.

https://github.com/uberVU/react-guide/blob/master/props-vs-state.md
https://lucybain.com/blog/2016/react-state-vs-pros/


See below for how to fix this problem.

How do I update state with values that depend on the current state?

Pass a function instead of an object to setState to ensure the call always
uses the most updated version of state (see below).

What is the difference between passing an object or a function in 
setState?

Passing an update function allows you to access the current state value
inside the updater. Since setState calls are batched, this lets you chain
updates and ensure they build on top of each other instead of conflicting:

 this.incrementCount();
 this.incrementCount();
 this.incrementCount();
 // When React re-renders the component, `this.state.count` wil

 // This is because `incrementCount()` function above reads fro
 // but React doesn't update `this.state.count` until the compo
 // So `incrementCount()` ends up reading `this.state.count` as

 // The fix is described below!
}

incrementCount() {
 this.setState((state) => {
   // Important: read `state` instead of `this.state` when upda
   return {count: state.count + 1}
 });
}

handleSomething() {
 // Let's say `this.state.count` starts at 0.
 this.incrementCount();
 this.incrementCount();
 this.incrementCount();



Learn more about setState

When is setState asynchronous?

Currently, setState is asynchronous inside event handlers.

This ensures, for example, that if both Parent and Child call setState
during a click event, Child isn’t re-rendered twice. Instead, React “flushes”
the state updates at the end of the browser event. This results in significant
performance improvements in larger apps.

This is an implementation detail so avoid relying on it directly. In the future
versions, React will batch updates by default in more cases.

Why doesn’t React update this.state synchronously?

As explained in the previous section, React intentionally “waits” until all
components call setState() in their event handlers before starting to re-
render. This boosts performance by avoiding unnecessary re-renders.

However, you might still be wondering why React doesn’t just update 
this.state immediately without re-rendering.

There are two main reasons:

This would break the consistency between props and state, causing
issues that are very hard to debug.
This would make some of the new features we’re working on
impossible to implement.

This GitHub comment dives deep into the specific examples.

 // If you read `this.state.count` now, it would still be 0.
 // But when React re-renders the component, it will be 3.
}

https://github.com/facebook/react/issues/11527#issuecomment-360199710


Should I use a state management library like Redux or MobX?

Maybe.

It’s a good idea to get to know React first, before adding in additional
libraries. You can build quite complex applications using only React.

Styling and CSS

How do I add CSS classes to components?

Pass a string as the className prop:

It is common for CSS classes to depend on the component props or state:

Tip

If you often find yourself writing code like this, classnames package
can simplify it.

Can I use inline styles?

Yes, see the docs on styling here.

Are inline styles bad?

render() {
 return <span className="menu navigation-menu">Menu</span>
}

render() {
 let className = 'menu';
 if (this.props.isActive) {
   className += ' menu-active';
 }
 return <span className={className}>Menu</span>
}

https://redux.js.org/faq/general#when-should-i-use-redux
https://www.npmjs.com/package/classnames#usage-with-reactjs


CSS classes are generally better for performance than inline styles.

What is CSS-in-JS?

“CSS-in-JS” refers to a pattern where CSS is composed using JavaScript
instead of defined in external files.

Note that this functionality is not a part of React, but provided by third-
party libraries. React does not have an opinion about how styles are
defined; if in doubt, a good starting point is to define your styles in a
separate *.css file as usual and refer to them using className.

Can I do animations in React?

React can be used to power animations. See React Transition Group, React
Motion, React Spring, or Framer Motion, for example.

File Structure

Is there a recommended way to structure React projects?

React doesn’t have opinions on how you put files into folders. That said
there are a few common approaches popular in the ecosystem you may
want to consider.

Grouping by features or routes

One common way to structure projects is to locate CSS, JS, and tests
together inside folders grouped by feature or route.

common/ 
  Avatar.js 
  Avatar.css 
  APIUtils.js 
  APIUtils.test.js 
feed/ 
  index.js 
  Feed.js 

https://reactcommunity.org/react-transition-group/
https://github.com/chenglou/react-motion
https://github.com/react-spring/react-spring
https://framer.com/motion


  Feed.css 
  FeedStory.js 
  FeedStory.test.js 
  FeedAPI.js 
profile/ 
  index.js 
  Profile.js 
  ProfileHeader.js 
  ProfileHeader.css 
  ProfileAPI.js

The definition of a “feature” is not universal, and it is up to you to choose
the granularity. If you can’t come up with a list of top-level folders, you can
ask the users of your product what major parts it consists of, and use their
mental model as a blueprint.

Grouping by file type

Another popular way to structure projects is to group similar files together,
for example:

api/ 
  APIUtils.js 
  APIUtils.test.js 
  ProfileAPI.js 
  UserAPI.js 
components/ 
  Avatar.js 
  Avatar.css 
  Feed.js 
  Feed.css 
  FeedStory.js 
  FeedStory.test.js 
  Profile.js 
  ProfileHeader.js 
  ProfileHeader.css

Some people also prefer to go further, and separate components into
different folders depending on their role in the application. For example,
Atomic Design is a design methodology built on this principle. Remember
that it’s often more productive to treat such methodologies as helpful
examples rather than strict rules to follow.

http://bradfrost.com/blog/post/atomic-web-design/


Avoid too much nesting

There are many pain points associated with deep directory nesting in
JavaScript projects. It becomes harder to write relative imports between
them, or to update those imports when the files are moved. Unless you have
a very compelling reason to use a deep folder structure, consider limiting
yourself to a maximum of three or four nested folders within a single
project. Of course, this is only a recommendation, and it may not be
relevant to your project.

Don’t overthink it

If you’re just starting a project, don’t spend more than five minutes on
choosing a file structure. Pick any of the above approaches (or come up
with your own) and start writing code! You’ll likely want to rethink it
anyway after you’ve written some real code.

If you feel completely stuck, start by keeping all files in a single folder.
Eventually it will grow large enough that you will want to separate some
files from the rest. By that time you’ll have enough knowledge to tell which
files you edit together most often. In general, it is a good idea to keep files
that often change together close to each other. This principle is called
“colocation”.

As projects grow larger, they often use a mix of both of the above
approaches in practice. So choosing the “right” one in the beginning isn’t
very important.

Versioning Policy

React follows semantic versioning (semver) principles.

That means that with a version number x.y.z:

When releasing critical bug fixes, we make a patch release by
changing the z number (ex: 15.6.2 to 15.6.3).

https://en.wikipedia.org/wiki/Analysis_paralysis
https://semver.org/


When releasing new features or non-critical fixes, we make a minor
release by changing the y number (ex: 15.6.2 to 15.7.0).
When releasing breaking changes, we make a major release by
changing the x number (ex: 15.6.2 to 16.0.0).

Major releases can also contain new features, and any release can include
bug fixes.

Minor releases are the most common type of release.

This versioning policy does not apply to prerelease builds in the Next
or Experimental channels. Learn more about prereleases.

Breaking Changes

Breaking changes are inconvenient for everyone, so we try to minimize the
number of major releases – for example, React 15 was released in April
2016 and React 16 was released in September 2017, and React 17 was
released in October 2020.

Instead, we release new features in minor versions. That means that minor
releases are often more interesting and compelling than majors, despite their
unassuming name.

Commitment to Stability

As we change React over time, we try to minimize the effort required to
take advantage of new features. When possible, we’ll keep an older API
working, even if that means putting it in a separate package. For example,
mixins have been discouraged for years but they’re supported to this day
via create-react-class and many codebases continue to use them in stable,
legacy code.

Over a million developers use React, collectively maintaining millions of
components. The Facebook codebase alone has over 50,000 React
components. That means we need to make it as easy as possible to upgrade
to new versions of React; if we make large changes without a migration

file:///C:/blog/2016/07/13/mixins-considered-harmful.html


path, people will be stuck on old versions. We test these upgrade paths on
Facebook itself – if our team of less than 10 people can update 50,000+
components alone, we hope the upgrade will be manageable for anyone
using React. In many cases, we write automated scripts to upgrade
component syntax, which we then include in the open-source release for
everyone to use.

Gradual Upgrades via Warnings

Development builds of React include many helpful warnings. Whenever
possible, we add warnings in preparation for future breaking changes. That
way, if your app has no warnings on the latest release, it will be compatible
with the next major release. This allows you to upgrade your apps one
component at a time.

Development warnings won’t affect the runtime behavior of your app. That
way, you can feel confident that your app will behave the same way
between the development and production builds – the only differences are
that the production build won’t log the warnings and that it is more
efficient. (If you ever notice otherwise, please file an issue.)

What Counts as a Breaking Change?

In general, we don’t bump the major version number for changes to:

Development warnings. Since these don’t affect production behavior,
we may add new warnings or modify existing warnings in between
major versions. In fact, this is what allows us to reliably warn about
upcoming breaking changes.
APIs starting with unstable_. These are provided as experimental
features whose APIs we are not yet confident in. By releasing these
with an unstable_ prefix, we can iterate faster and get to a stable API
sooner.
Alpha and canary versions of React. We provide alpha versions of
React as a way to test new features early, but we need the flexibility to
make changes based on what we learn in the alpha period. If you use
these versions, note that APIs may change before the stable release.

https://github.com/reactjs/react-codemod


Undocumented APIs and internal data structures. If you access
internal property names like 
__SECRET_INTERNALS_DO_NOT_USE_OR_YOU_WILL_BE_FIRED or 
__reactInternalInstance$uk43rzhitjg, there is no warranty. You
are on your own.

This policy is designed to be pragmatic: certainly, we don’t want to cause
headaches for you. If we bumped the major version for all of these changes,
we would end up releasing more major versions and ultimately causing
more versioning pain for the community. It would also mean that we can’t
make progress in improving React as fast as we’d like.

That said, if we expect that a change on this list will cause broad problems
in the community, we will still do our best to provide a gradual migration
path.

If a Minor Release Includes No New Features, Why Isn’t It a Patch?

It’s possible that a minor release will not include new features. This is
allowed by semver, which states “[a minor version] MAY be incremented
if substantial new functionality or improvements are introduced within
the private code. It MAY include patch level changes.”

However, it does raise the question of why these releases aren’t versioned
as patches instead.

The answer is that any change to React (or other software) carries some risk
of breaking in unexpected ways. Imagine a scenario where a patch release
that fixes one bug accidentally introduces a different bug. This would not
only be disruptive to developers, but also harm their confidence in future
patch releases. It’s especially regrettable if the original fix is for a bug that
is rarely encountered in practice.

We have a pretty good track record for keeping React releases free of bugs,
but patch releases have an even higher bar for reliability because most
developers assume they can be adopted without adverse consequences.

https://semver.org/#spec-item-7


For these reasons, we reserve patch releases only for the most critical bugs
and security vulnerabilities.

If a release includes non-essential changes — such as internal refactors,
changes to implementation details, performance improvements, or minor
bugfixes — we will bump the minor version even when there are no new
features.

Virtual DOM and Internals

What is the Virtual DOM?

The virtual DOM (VDOM) is a programming concept where an ideal, or
“virtual”, representation of a UI is kept in memory and synced with the
“real” DOM by a library such as ReactDOM. This process is called
reconciliation.

This approach enables the declarative API of React: You tell React what
state you want the UI to be in, and it makes sure the DOM matches that
state. This abstracts out the attribute manipulation, event handling, and
manual DOM updating that you would otherwise have to use to build your
app.

Since “virtual DOM” is more of a pattern than a specific technology, people
sometimes say it to mean different things. In React world, the term “virtual
DOM” is usually associated with React elements since they are the objects
representing the user interface. React, however, also uses internal objects
called “fibers” to hold additional information about the component tree.
They may also be considered a part of “virtual DOM” implementation in
React.

Is the Shadow DOM the same as the Virtual DOM?

No, they are different. The Shadow DOM is a browser technology designed
primarily for scoping variables and CSS in web components. The virtual



DOM is a concept implemented by libraries in JavaScript on top of browser
APIs.

What is “React Fiber”?

Fiber is the new reconciliation engine in React 16. Its main goal is to enable
incremental rendering of the virtual DOM. Read more.

https://github.com/acdlite/react-fiber-architecture

	License
	Installation
	Getting Started
	Add React to a Website
	Create a New React App
	CDN Links
	Release Channels

	Main Concepts
	Hello World
	Introducing JSX
	Rendering Elements
	Components and Props
	State and Lifecycle
	Handling Events
	Conditional Rendering
	Lists and Keys
	Forms
	Lifting State Up
	Composition vs Inheritance
	Thinking in React

	Advanced Guides
	Accessibility
	Accessibility
	Code-Splitting
	Context
	Error Boundaries
	Forwarding Refs
	Fragments
	Higher-Order Components
	Integrating with Other Libraries
	JSX In Depth
	Optimizing Performance
	Portals
	Profiler API
	React Without ES6
	React Without JSX
	Reconciliation
	Refs and the DOM
	Render Props
	Static Type Checking
	Strict Mode
	Typechecking With PropTypes
	Uncontrolled Components
	Web Components

	API Reference
	React Top-Level API
	React.Component
	ReactDOM
	ReactDOMClient
	ReactDOMServer
	DOM Elements
	SyntheticEvent
	Test Utilities
	Test Renderer
	JavaScript Environment Requirements
	Glossary of React Terms

	Hooks
	Introducing Hooks
	Hooks at a Glance
	Using the State Hook
	Using the Effect Hook
	Rules of Hooks
	Building Your Own Hooks
	Hooks API Reference
	Hooks FAQ

	Testing
	Testing Overview
	Testing Recipes
	Testing Environments

	Contributing
	How to Contribute
	Codebase Overview
	Implementation Notes
	Design Principles

	FAQ
	AJAX and APIs
	Babel, JSX, and Build Steps
	Passing Functions to Components
	Component State
	Styling and CSS
	File Structure
	Versioning Policy
	Virtual DOM and Internals


