

 React Docs

 v18.2.0

 react.org

 2022-08-14

React Docs
	License
	Installation	Getting Started
	Add React to a Website
	Create a New React App
	CDN Links
	Release Channels

	Main Concepts	Hello World
	Introducing JSX
	Rendering Elements
	Components and Props
	State and Lifecycle
	Handling Events
	Conditional Rendering
	Lists and Keys
	Forms
	Lifting State Up
	Composition vs Inheritance
	Thinking in React

	Advanced Guides	Accessibility
	Accessibility
	Code-Splitting
	Context
	Error Boundaries
	Forwarding Refs
	Fragments
	Higher-Order Components
	Integrating with Other Libraries
	JSX In Depth
	Optimizing Performance
	Portals
	Profiler API
	React Without ES6
	React Without JSX
	Reconciliation
	Refs and the DOM
	Render Props
	Static Type Checking
	Strict Mode
	Typechecking With PropTypes
	Uncontrolled Components
	Web Components

	API Reference	React Top-Level API
	React.Component
	ReactDOM
	ReactDOMClient
	ReactDOMServer
	DOM Elements
	SyntheticEvent
	Test Utilities
	Test Renderer
	JavaScript Environment Requirements
	Glossary of React Terms

	Hooks	Introducing Hooks
	Hooks at a Glance
	Using the State Hook
	Using the Effect Hook
	Rules of Hooks
	Building Your Own Hooks
	Hooks API Reference
	Hooks FAQ

	Testing	Testing Overview
	Testing Recipes
	Testing Environments

	Contributing	How to Contribute
	Codebase Overview
	Implementation Notes
	Design Principles

	FAQ	AJAX and APIs
	Babel, JSX, and Build Steps
	Passing Functions to Components
	Component State
	Styling and CSS
	File Structure
	Versioning Policy
	Virtual DOM and Internals

 	
 Title Page

 	
 Table of Contents

License

MIT License

Copyright (c) Facebook, Inc. and its affiliates.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Installation

Getting Started

This page is an overview of the React documentation and related resources.

React is a JavaScript library for building user interfaces. Learn what React is all about on our homepage or in the tutorial.

	Try React

	Learn React

	Staying Informed

	Versioned Documentation

	Something Missing?

Try React

React has been designed from the start for gradual adoption, and you can use as little or as much React as you need. Whether you want to get a taste of React, add some interactivity to a simple HTML page, or start a complex React-powered app, the links in this section will help you get started.

Online Playgrounds

If you’re interested in playing around with React, you can use an online code playground. Try a Hello World template on CodePen, CodeSandbox, or Stackblitz.

If you prefer to use your own text editor, you can also download this HTML file, edit it, and open it from the local filesystem in your browser. It does a slow runtime code transformation, so we’d only recommend using this for simple demos.

Add React to a Website

You can add React to an HTML page in one minute. You can then either gradually expand its presence, or keep it contained to a few dynamic widgets.

Create a New React App

When starting a React project, a simple HTML page with script tags might still be the best option. It only takes a minute to set up!

As your application grows, you might want to consider a more integrated setup. There are several JavaScript toolchains we recommend for larger applications. Each of them can work with little to no configuration and lets you take full advantage of the rich React ecosystem. Learn how.

Learn React

People come to React from different backgrounds and with different learning styles. Whether you prefer a more theoretical or a practical approach, we hope you’ll find this section helpful.

	If you prefer to learn by doing, start with our practical tutorial.

	If you prefer to learn concepts step by step, start with our guide to main concepts.

Like any unfamiliar technology, React does have a learning curve. With practice and some patience, you will get the hang of it.

First Examples

The React homepage contains a few small React examples with a live editor. Even if you don’t know anything about React yet, try changing their code and see how it affects the result.

React for Beginners

If you feel that the React documentation goes at a faster pace than you’re comfortable with, check out this overview of React by Tania Rascia. It introduces the most important React concepts in a detailed, beginner-friendly way. Once you’re done, give the documentation another try!

React for Designers

If you’re coming from a design background, these resources are a great place to get started.

JavaScript Resources

The React documentation assumes some familiarity with programming in the JavaScript language. You don’t have to be an expert, but it’s harder to learn both React and JavaScript at the same time.

We recommend going through this JavaScript overview to check your knowledge level. It will take you between 30 minutes and an hour but you will feel more confident learning React.

Tip

Whenever you get confused by something in JavaScript, MDN and javascript.info are great websites to check. There are also community support forums where you can ask for help.

Practical Tutorial

If you prefer to learn by doing, check out our practical tutorial. In this tutorial, we build a tic-tac-toe game in React. You might be tempted to skip it because you’re not into building games – but give it a chance. The techniques you’ll learn in the tutorial are fundamental to building any React apps, and mastering it will give you a much deeper understanding.

Step-by-Step Guide

If you prefer to learn concepts step by step, our guide to main concepts is the best place to start. Every next chapter in it builds on the knowledge introduced in the previous chapters so you won’t miss anything as you go along.

Thinking in React

Many React users credit reading Thinking in React as the moment React finally “clicked” for them. It’s probably the oldest React walkthrough but it’s still just as relevant.

Recommended Courses

Sometimes people find third-party books and video courses more helpful than the official documentation. We maintain a list of commonly recommended resources, some of which are free.

Advanced Concepts

Once you’re comfortable with the main concepts and played with React a little bit, you might be interested in more advanced topics. This section will introduce you to the powerful, but less commonly used React features like context and refs.

API Reference

This documentation section is useful when you want to learn more details about a particular React API. For example, React.Component API reference can provide you with details on how setState() works, and what different lifecycle methods are useful for.

Glossary and FAQ

The glossary contains an overview of the most common terms you’ll see in the React documentation. There is also a FAQ section dedicated to short questions and answers about common topics, including making AJAX requests, component state, and file structure.

Staying Informed

The React blog is the official source for the updates from the React team. Anything important, including release notes or deprecation notices, will be posted there first.

You can also follow the @reactjs account on Twitter, but you won’t miss anything essential if you only read the blog.

Not every React release deserves its own blog post, but you can find a detailed changelog for every release in the CHANGELOG.md file in the React repository, as well as on the Releases page.

Versioned Documentation

This documentation always reflects the latest stable version of React. Since React 16, you can find older versions of the documentation on a separate page. Note that documentation for past versions is snapshotted at the time of the release, and isn’t being continuously updated.

Something Missing?

If something is missing in the documentation or if you found some part confusing, please file an issue for the documentation repository with your suggestions for improvement, or tweet at the @reactjs account. We love hearing from you!

Add React to a Website

Use as little or as much React as you need.

React has been designed from the start for gradual adoption, and you can use as little or as much React as you need. Perhaps you only want to add some “sprinkles of interactivity” to an existing page. React components are a great way to do that.

The majority of websites aren’t, and don’t need to be, single-page apps. With a few lines of code and no build tooling, try React in a small part of your website. You can then either gradually expand its presence, or keep it contained to a few dynamic widgets.

	Add React in One Minute

	Optional: Try React with JSX (no bundler necessary!)

Add React in One Minute

In this section, we will show how to add a React component to an existing HTML page. You can follow along with your own website, or create an empty HTML file to practice.

There will be no complicated tools or install requirements – to complete this section, you only need an internet connection, and a minute of your time.

Optional: Download the full example (2KB zipped)

Step 1: Add a DOM Container to the HTML

First, open the HTML page you want to edit. Add an empty <div> tag to mark the spot where you want to display something with React. For example:

<!-- ... existing HTML ... -->

<div id="like_button_container"></div>

<!-- ... existing HTML ... -->

We gave this <div> a unique id HTML attribute. This will allow us to find it from the JavaScript code later and display a React component inside of it.

Tip

You can place a “container” <div> like this anywhere inside the <body> tag. You may have as many independent DOM containers on one page as you need. They are usually empty – React will replace any existing content inside DOM containers.

Step 2: Add the Script Tags

Next, add three <script> tags to the HTML page right before the closing </body> tag:

 <!-- ... other HTML ... -->

 <!-- Load React. -->
 <!-- Note: when deploying, replace "development.js" with "production.min.js". -->
 <script src="https://unpkg.com/react@18/umd/react.development.js" crossorigin></script>
 <script src="https://unpkg.com/react-dom@18/umd/react-dom.development.js" crossorigin></script>

 <!-- Load our React component. -->
 <script src="like_button.js"></script>

</body>

The first two tags load React. The third one will load your component code.

Step 3: Create a React Component

Create a file called like_button.js next to your HTML page.

Open this starter code and paste it into the file you created.

Tip

This code defines a React component called LikeButton. Don’t worry if you don’t understand it yet – we’ll cover the building blocks of React later in our hands-on tutorial and main concepts guide. For now, let’s just get it showing on the screen!

After the starter code, add three lines to the bottom of like_button.js:

// ... the starter code you pasted ...

const domContainer = document.querySelector('#like_button_container');
const root = ReactDOM.createRoot(domContainer);
root.render(e(LikeButton));

These three lines of code find the <div> we added to our HTML in the first step, create a React app with it, and then display our “Like” button React component inside of it.

That’s It!

There is no step four. You have just added the first React component to your website.

Check out the next sections for more tips on integrating React.

View the full example source code

Download the full example (2KB zipped)

Tip: Reuse a Component

Commonly, you might want to display React components in multiple places on the HTML page. Here is an example that displays the “Like” button three times and passes some data to it:

View the full example source code

Download the full example (2KB zipped)

Note

This strategy is mostly useful while React-powered parts of the page are isolated from each other. Inside React code, it’s easier to use component composition instead.

Tip: Minify JavaScript for Production

Before deploying your website to production, be mindful that unminified JavaScript can significantly slow down the page for your users.

If you already minify the application scripts, your site will be production-ready if you ensure that the deployed HTML loads the versions of React ending in production.min.js:

<script src="https://unpkg.com/react@18/umd/react.production.min.js" crossorigin></script>
<script src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js" crossorigin></script>

If you don’t have a minification step for your scripts, here’s one way to set it up.

Optional: Try React with JSX

In the examples above, we only relied on features that are natively supported by browsers. This is why we used a JavaScript function call to tell React what to display:

const e = React.createElement;

// Display a "Like" <button>
return e(
 'button',
 { onClick: () => this.setState({ liked: true }) },
 'Like'
);

However, React also offers an option to use JSX instead:

// Display a "Like" <button>
return (
 <button onClick={() => this.setState({ liked: true })}>
 Like
 </button>
);

These two code snippets are equivalent. While JSX is completely optional, many people find it helpful for writing UI code – both with React and with other libraries.

You can play with JSX using this online converter.

Quickly Try JSX

The quickest way to try JSX in your project is to add this <script> tag to your page:

<script src="https://unpkg.com/babel-standalone@6/babel.min.js"></script>

Now you can use JSX in any <script> tag by adding type="text/babel" attribute to it. Here is an example HTML file with JSX that you can download and play with.

This approach is fine for learning and creating simple demos. However, it makes your website slow and isn’t suitable for production. When you’re ready to move forward, remove this new <script> tag and the type="text/babel" attributes you’ve added. Instead, in the next section you will set up a JSX preprocessor to convert all your <script> tags automatically.

Add JSX to a Project

Adding JSX to a project doesn’t require complicated tools like a bundler or a development server. Essentially, adding JSX is a lot like adding a CSS preprocessor. The only requirement is to have Node.js installed on your computer.

Go to your project folder in the terminal, and paste these two commands:

	Step 1: Run npm init -y (if it fails, here’s a fix)

	Step 2: Run npm install babel-cli@6 babel-preset-react-app@3

Tip

We’re using npm here only to install the JSX preprocessor; you won’t need it for anything else. Both React and the application code can stay as <script> tags with no changes.

Congratulations! You just added a production-ready JSX setup to your project.

Run JSX Preprocessor

Create a folder called src and run this terminal command:

npx babel --watch src --out-dir . --presets react-app/prod

Note

npx is not a typo – it’s a package runner tool that comes with npm 5.2+.

If you see an error message saying “You have mistakenly installed the babel package”, you might have missed the previous step. Perform it in the same folder, and then try again.

Don’t wait for it to finish – this command starts an automated watcher for JSX.

If you now create a file called src/like_button.js with this JSX starter code, the watcher will create a preprocessed like_button.js with the plain JavaScript code suitable for the browser. When you edit the source file with JSX, the transform will re-run automatically.

As a bonus, this also lets you use modern JavaScript syntax features like classes without worrying about breaking older browsers. The tool we just used is called Babel, and you can learn more about it from its documentation.

If you notice that you’re getting comfortable with build tools and want them to do more for you, the next section describes some of the most popular and approachable toolchains. If not – those script tags will do just fine!

Create a New React App

Use an integrated toolchain for the best user and developer experience.

This page describes a few popular React toolchains which help with tasks like:

	Scaling to many files and components.

	Using third-party libraries from npm.

	Detecting common mistakes early.

	Live-editing CSS and JS in development.

	Optimizing the output for production.

The toolchains recommended on this page don’t require configuration to get started.

You Might Not Need a Toolchain

If you don’t experience the problems described above or don’t feel comfortable using JavaScript tools yet, consider adding React as a plain <script> tag on an HTML page, optionally with JSX.

This is also the easiest way to integrate React into an existing website. You can always add a larger toolchain if you find it helpful!

Recommended Toolchains

The React team primarily recommends these solutions:

	If you’re learning React or creating a new single-page app, use Create React App.

	If you’re building a server-rendered website with Node.js, try Next.js.

	If you’re building a static content-oriented website, try Gatsby.

	If you’re building a component library or integrating with an existing codebase, try More Flexible Toolchains.

Create React App

Create React App is a comfortable environment for learning React, and is the best way to start building a new single-page application in React.

It sets up your development environment so that you can use the latest JavaScript features, provides a nice developer experience, and optimizes your app for production. You’ll need to have Node >= 14.0.0 and npm >= 5.6 on your machine. To create a project, run:

npx create-react-app my-app
cd my-app
npm start

Note

npx on the first line is not a typo – it’s a package runner tool that comes with npm 5.2+.

Create React App doesn’t handle backend logic or databases; it just creates a frontend build pipeline, so you can use it with any backend you want. Under the hood, it uses Babel and webpack, but you don’t need to know anything about them.

When you’re ready to deploy to production, running npm run build will create an optimized build of your app in the build folder. You can learn more about Create React App from its README and the User Guide.

Next.js

Next.js is a popular and lightweight framework for static and server‑rendered applications built with React. It includes styling and routing solutions out of the box, and assumes that you’re using Node.js as the server environment.

Learn Next.js from its official guide.

Gatsby

Gatsby is the best way to create static websites with React. It lets you use React components, but outputs pre-rendered HTML and CSS to guarantee the fastest load time.

Learn Gatsby from its official guide and a gallery of starter kits.

More Flexible Toolchains

The following toolchains offer more flexibility and choice. We recommend them to more experienced users:

	Neutrino combines the power of webpack with the simplicity of presets, and includes a preset for React apps and React components.

	Nx is a toolkit for full-stack monorepo development, with built-in support for React, Next.js, Express, and more.

	Parcel is a fast, zero configuration web application bundler that works with React.

	Razzle is a server-rendering framework that doesn’t require any configuration, but offers more flexibility than Next.js.

Creating a Toolchain from Scratch

A JavaScript build toolchain typically consists of:

	A package manager, such as Yarn or npm. It lets you take advantage of a vast ecosystem of third-party packages, and easily install or update them.

	A bundler, such as webpack or Parcel. It lets you write modular code and bundle it together into small packages to optimize load time.

	A compiler such as Babel. It lets you write modern JavaScript code that still works in older browsers.

If you prefer to set up your own JavaScript toolchain from scratch, check out this guide that re-creates some of the Create React App functionality.

Don’t forget to ensure your custom toolchain is correctly set up for production.

CDN Links

Both React and ReactDOM are available over a CDN.

<script crossorigin src="https://unpkg.com/react@18/umd/react.development.js"></script>
<script crossorigin src="https://unpkg.com/react-dom@18/umd/react-dom.development.js"></script>

The versions above are only meant for development, and are not suitable for production. Minified and optimized production versions of React are available at:

<script crossorigin src="https://unpkg.com/react@18/umd/react.production.min.js"></script>
<script crossorigin src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js"></script>

To load a specific version of react and react-dom, replace 18 with the version number.

Why the crossorigin Attribute?

If you serve React from a CDN, we recommend to keep the crossorigin attribute set:

<script crossorigin src="..."></script>

We also recommend to verify that the CDN you are using sets the Access-Control-Allow-Origin: * HTTP header:

[image: Access-Control-Allow-Origin: *]
Access-Control-Allow-Origin: *

This enables a better error handling experience in React 16 and later.

Release Channels

React relies on a thriving open source community to file bug reports, open pull requests, and submit RFCs. To encourage feedback we sometimes share special builds of React that include unreleased features.

This document will be most relevant to developers who work on frameworks, libraries, or developer tooling. Developers who use React primarily to build user-facing applications should not need to worry about our prerelease channels.

Each of React’s release channels is designed for a distinct use case:

	Latest is for stable, semver React releases. It’s what you get when you install React from npm. This is the channel you’re already using today. Use this for all user-facing React applications.

	Next tracks the main branch of the React source code repository. Think of these as release candidates for the next minor semver release. Use this for integration testing between React and third party projects.

	Experimental includes experimental APIs and features that aren’t available in the stable releases. These also track the main branch, but with additional feature flags turned on. Use this to try out upcoming features before they are released.

All releases are published to npm, but only Latest uses semantic versioning. Prereleases (those in the Next and Experimental channels) have versions generated from a hash of their contents and the commit date, e.g. 0.0.0-68053d940-20210623 for Next and 0.0.0-experimental-68053d940-20210623 for Experimental.

The only officially supported release channel for user-facing applications is Latest. Next and Experimental releases are provided for testing purposes only, and we provide no guarantees that behavior won’t change between releases. They do not follow the semver protocol that we use for releases from Latest.

By publishing prereleases to the same registry that we use for stable releases, we are able to take advantage of the many tools that support the npm workflow, like unpkg and CodeSandbox.

Latest Channel

Latest is the channel used for stable React releases. It corresponds to the latest tag on npm. It is the recommended channel for all React apps that are shipped to real users.

If you’re not sure which channel you should use, it’s Latest. If you’re a React developer, this is what you’re already using.

You can expect updates to Latest to be extremely stable. Versions follow the semantic versioning scheme. Learn more about our commitment to stability and incremental migration in our versioning policy.

Next Channel

The Next channel is a prerelease channel that tracks the main branch of the React repository. We use prereleases in the Next channel as release candidates for the Latest channel. You can think of Next as a superset of Latest that is updated more frequently.

The degree of change between the most recent Next release and the most recent Latest release is approximately the same as you would find between two minor semver releases. However, the Next channel does not conform to semantic versioning. You should expect occasional breaking changes between successive releases in the Next channel.

Do not use prereleases in user-facing applications.

Releases in Next are published with the next tag on npm. Versions are generated from a hash of the build’s contents and the commit date, e.g. 0.0.0-68053d940-20210623.

Using the Next Channel for Integration Testing

The Next channel is designed to support integration testing between React and other projects.

All changes to React go through extensive internal testing before they are released to the public. However, there are a myriad of environments and configurations used throughout the React ecosystem, and it’s not possible for us to test against every single one.

If you’re the author of a third party React framework, library, developer tool, or similar infrastructure-type project, you can help us keep React stable for your users and the entire React community by periodically running your test suite against the most recent changes. If you’re interested, follow these steps:

	Set up a cron job using your preferred continuous integration platform. Cron jobs are supported by both CircleCI and Travis CI.

	In the cron job, update your React packages to the most recent React release in the Next channel, using next tag on npm. Using the npm cli:

npm update react@next react-dom@next

Or yarn:

yarn upgrade react@next react-dom@next

	Run your test suite against the updated packages.

	If everything passes, great! You can expect that your project will work with the next minor React release.

	If something breaks unexpectedly, please let us know by filing an issue.

A project that uses this workflow is Next.js. (No pun intended! Seriously!) You can refer to their CircleCI configuration as an example.

Experimental Channel

Like Next, the Experimental channel is a prerelease channel that tracks the main branch of the React repository. Unlike Next, Experimental releases include additional features and APIs that are not ready for wider release.

Usually, an update to Next is accompanied by a corresponding update to Experimental. They are based on the same source revision, but are built using a different set of feature flags.

Experimental releases may be significantly different than releases to Next and Latest. Do not use Experimental releases in user-facing applications. You should expect frequent breaking changes between releases in the Experimental channel.

Releases in Experimental are published with the experimental tag on npm. Versions are generated from a hash of the build’s contents and the commit date, e.g. 0.0.0-experimental-68053d940-20210623.

What Goes Into an Experimental Release?

Experimental features are ones that are not ready to be released to the wider public, and may change drastically before they are finalized. Some experiments may never be finalized – the reason we have experiments is to test the viability of proposed changes.

For example, if the Experimental channel had existed when we announced Hooks, we would have released Hooks to the Experimental channel weeks before they were available in Latest.

You may find it valuable to run integration tests against Experimental. This is up to you. However, be advised that Experimental is even less stable than Next. We do not guarantee any stability between Experimental releases.

How Can I Learn More About Experimental Features?

Experimental features may or may not be documented. Usually, experiments aren’t documented until they are close to shipping in Next or Latest.

If a feature is not documented, they may be accompanied by an RFC.

We will post to the React blog when we’re ready to announce new experiments, but that doesn’t mean we will publicize every experiment.

You can always refer to our public GitHub repository’s history for a comprehensive list of changes.

Main Concepts

Hello World

The smallest React example looks like this:

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<h1>Hello, world!</h1>);

It displays a heading saying “Hello, world!” on the page.

Try it on CodePen

Click the link above to open an online editor. Feel free to make some changes, and see how they affect the output. Most pages in this guide will have editable examples like this one.

How to Read This Guide

In this guide, we will examine the building blocks of React apps: elements and components. Once you master them, you can create complex apps from small reusable pieces.

Tip

This guide is designed for people who prefer learning concepts step by step. If you prefer to learn by doing, check out our practical tutorial. You might find this guide and the tutorial complementary to each other.

This is the first chapter in a step-by-step guide about main React concepts. You can find a list of all its chapters in the navigation sidebar. If you’re reading this from a mobile device, you can access the navigation by pressing the button in the bottom right corner of your screen.

Every chapter in this guide builds on the knowledge introduced in earlier chapters. You can learn most of React by reading the “Main Concepts” guide chapters in the order they appear in the sidebar. For example, “Introducing JSX” is the next chapter after this one.

Knowledge Level Assumptions

React is a JavaScript library, and so we’ll assume you have a basic understanding of the JavaScript language. If you don’t feel very confident, we recommend going through a JavaScript tutorial to check your knowledge level and enable you to follow along this guide without getting lost. It might take you between 30 minutes and an hour, but as a result you won’t have to feel like you’re learning both React and JavaScript at the same time.

Note

This guide occasionally uses some newer JavaScript syntax in the examples. If you haven’t worked with JavaScript in the last few years, these three points should get you most of the way.

Let’s Get Started!

Keep scrolling down, and you’ll find the link to the next chapter of this guide right before the website footer.

Introducing JSX

Consider this variable declaration:

const element = <h1>Hello, world!</h1>;

This funny tag syntax is neither a string nor HTML.

It is called JSX, and it is a syntax extension to JavaScript. We recommend using it with React to describe what the UI should look like. JSX may remind you of a template language, but it comes with the full power of JavaScript.

JSX produces React “elements”. We will explore rendering them to the DOM in the next section. Below, you can find the basics of JSX necessary to get you started.

Why JSX?

React embraces the fact that rendering logic is inherently coupled with other UI logic: how events are handled, how the state changes over time, and how the data is prepared for display.

Instead of artificially separating technologies by putting markup and logic in separate files, React separates concerns with loosely coupled units called “components” that contain both. We will come back to components in a further section, but if you’re not yet comfortable putting markup in JS, this talk might convince you otherwise.

React doesn’t require using JSX, but most people find it helpful as a visual aid when working with UI inside the JavaScript code. It also allows React to show more useful error and warning messages.

With that out of the way, let’s get started!

Embedding Expressions in JSX

In the example below, we declare a variable called name and then use it inside JSX by wrapping it in curly braces:

const name = 'Josh Perez';
const element = <h1>Hello, {name}</h1>;

You can put any valid JavaScript expression inside the curly braces in JSX. For example, 2 + 2, user.firstName, or formatName(user) are all valid JavaScript expressions.

In the example below, we embed the result of calling a JavaScript function, formatName(user), into an <h1> element.

function formatName(user) {
 return user.firstName + ' ' + user.lastName;
}

const user = {
 firstName: 'Harper',
 lastName: 'Perez'
};

const element = (
 <h1>
 Hello, {formatName(user)}!
 </h1>
);

Try it on CodePen

We split JSX over multiple lines for readability. While it isn’t required, when doing this, we also recommend wrapping it in parentheses to avoid the pitfalls of automatic semicolon insertion.

JSX is an Expression Too

After compilation, JSX expressions become regular JavaScript function calls and evaluate to JavaScript objects.

This means that you can use JSX inside of if statements and for loops, assign it to variables, accept it as arguments, and return it from functions:

function getGreeting(user) {
 if (user) {
 return <h1>Hello, {formatName(user)}!</h1>;
 }
 return <h1>Hello, Stranger.</h1>;
}

Specifying Attributes with JSX

You may use quotes to specify string literals as attributes:

const element = link ;

You may also use curly braces to embed a JavaScript expression in an attribute:

const element = ;

Don’t put quotes around curly braces when embedding a JavaScript expression in an attribute. You should either use quotes (for string values) or curly braces (for expressions), but not both in the same attribute.

Warning:

Since JSX is closer to JavaScript than to HTML, React DOM uses camelCase property naming convention instead of HTML attribute names.

For example, class becomes className in JSX, and tabindex becomes tabIndex.

Specifying Children with JSX

If a tag is empty, you may close it immediately with />, like XML:

const element = ;

JSX tags may contain children:

const element = (
 <div>
 <h1>Hello!</h1>
 <h2>Good to see you here.</h2>
 </div>
);

JSX Prevents Injection Attacks

It is safe to embed user input in JSX:

const title = response.potentiallyMaliciousInput;
// This is safe:
const element = <h1>{title}</h1>;

By default, React DOM escapes any values embedded in JSX before rendering them. Thus it ensures that you can never inject anything that’s not explicitly written in your application. Everything is converted to a string before being rendered. This helps prevent XSS (cross-site-scripting) attacks.

JSX Represents Objects

Babel compiles JSX down to React.createElement() calls.

These two examples are identical:

const element = (
 <h1 className="greeting">
 Hello, world!
 </h1>
);

const element = React.createElement(
 'h1',
 {className: 'greeting'},
 'Hello, world!'
);

React.createElement() performs a few checks to help you write bug-free code but essentially it creates an object like this:

// Note: this structure is simplified
const element = {
 type: 'h1',
 props: {
 className: 'greeting',
 children: 'Hello, world!'
 }
};

These objects are called “React elements”. You can think of them as descriptions of what you want to see on the screen. React reads these objects and uses them to construct the DOM and keep it up to date.

We will explore rendering React elements to the DOM in the next section.

Tip:

We recommend using the “Babel” language definition for your editor of choice so that both ES6 and JSX code is properly highlighted.

Rendering Elements

Elements are the smallest building blocks of React apps.

An element describes what you want to see on the screen:

const element = <h1>Hello, world</h1>;

Unlike browser DOM elements, React elements are plain objects, and are cheap to create. React DOM takes care of updating the DOM to match the React elements.

Note:

One might confuse elements with a more widely known concept of “components”. We will introduce components in the next section. Elements are what components are “made of”, and we encourage you to read this section before jumping ahead.

Rendering an Element into the DOM

Let’s say there is a <div> somewhere in your HTML file:

<div id="root"></div>

We call this a “root” DOM node because everything inside it will be managed by React DOM.

Applications built with just React usually have a single root DOM node. If you are integrating React into an existing app, you may have as many isolated root DOM nodes as you like.

To render a React element, first pass the DOM element to ReactDOM.createRoot(), then pass the React element to root.render():

embed:rendering-elements/render-an-element.js

Try it on CodePen

It displays “Hello, world” on the page.

Updating the Rendered Element

React elements are immutable. Once you create an element, you can’t change its children or attributes. An element is like a single frame in a movie: it represents the UI at a certain point in time.

With our knowledge so far, the only way to update the UI is to create a new element, and pass it to root.render().

Consider this ticking clock example:

embed:rendering-elements/update-rendered-element.js

Try it on CodePen

It calls root.render() every second from a setInterval() callback.

Note:

In practice, most React apps only call root.render() once. In the next sections we will learn how such code gets encapsulated into stateful components.

We recommend that you don’t skip topics because they build on each other.

React Only Updates What’s Necessary

React DOM compares the element and its children to the previous one, and only applies the DOM updates necessary to bring the DOM to the desired state.

You can verify by inspecting the last example with the browser tools:

[image: DOM inspector showing granular updates]
DOM inspector showing granular updates

Even though we create an element describing the whole UI tree on every tick, only the text node whose contents have changed gets updated by React DOM.

In our experience, thinking about how the UI should look at any given moment, rather than how to change it over time, eliminates a whole class of bugs.

Components and Props

Components let you split the UI into independent, reusable pieces, and think about each piece in isolation. This page provides an introduction to the idea of components. You can find a detailed component API reference here.

Conceptually, components are like JavaScript functions. They accept arbitrary inputs (called “props”) and return React elements describing what should appear on the screen.

Function and Class Components

The simplest way to define a component is to write a JavaScript function:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

This function is a valid React component because it accepts a single “props” (which stands for properties) object argument with data and returns a React element. We call such components “function components” because they are literally JavaScript functions.

You can also use an ES6 class to define a component:

class Welcome extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}</h1>;
 }
}

The above two components are equivalent from React’s point of view.

Function and Class components both have some additional features that we will discuss in the next sections.

Rendering a Component

Previously, we only encountered React elements that represent DOM tags:

const element = <div />;

However, elements can also represent user-defined components:

const element = <Welcome name="Sara" />;

When React sees an element representing a user-defined component, it passes JSX attributes and children to this component as a single object. We call this object “props”.

For example, this code renders “Hello, Sara” on the page:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

const root = ReactDOM.createRoot(document.getElementById('root'));
const element = <Welcome name="Sara" />;
root.render(element);

Try it on CodePen

Let’s recap what happens in this example:

	We call root.render() with the <Welcome name="Sara" /> element.

	React calls the Welcome component with {name: 'Sara'} as the props.

	Our Welcome component returns a <h1>Hello, Sara</h1> element as the result.

	React DOM efficiently updates the DOM to match <h1>Hello, Sara</h1>.

Note: Always start component names with a capital letter.

React treats components starting with lowercase letters as DOM tags. For example, <div /> represents an HTML div tag, but <Welcome /> represents a component and requires Welcome to be in scope.

To learn more about the reasoning behind this convention, please read JSX In Depth.

Composing Components

Components can refer to other components in their output. This lets us use the same component abstraction for any level of detail. A button, a form, a dialog, a screen: in React apps, all those are commonly expressed as components.

For example, we can create an App component that renders Welcome many times:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

function App() {
 return (
 <div>
 <Welcome name="Sara" />
 <Welcome name="Cahal" />
 <Welcome name="Edite" />
 </div>
);
}

Try it on CodePen

Typically, new React apps have a single App component at the very top. However, if you integrate React into an existing app, you might start bottom-up with a small component like Button and gradually work your way to the top of the view hierarchy.

Extracting Components

Don’t be afraid to split components into smaller components.

For example, consider this Comment component:

function Comment(props) {
 return (
 <div className="Comment">
 <div className="UserInfo">
 <img className="Avatar"
 src={props.author.avatarUrl}
 alt={props.author.name}
 />
 <div className="UserInfo-name">
 {props.author.name}
 </div>
 </div>
 <div className="Comment-text">
 {props.text}
 </div>
 <div className="Comment-date">
 {formatDate(props.date)}
 </div>
 </div>
);
}

Try it on CodePen

It accepts author (an object), text (a string), and date (a date) as props, and describes a comment on a social media website.

This component can be tricky to change because of all the nesting, and it is also hard to reuse individual parts of it. Let’s extract a few components from it.

First, we will extract Avatar:

function Avatar(props) {
 return (
 <img className="Avatar"
 src={props.user.avatarUrl}
 alt={props.user.name}
 />
);
}

The Avatar doesn’t need to know that it is being rendered inside a Comment. This is why we have given its prop a more generic name: user rather than author.

We recommend naming props from the component’s own point of view rather than the context in which it is being used.

We can now simplify Comment a tiny bit:

function Comment(props) {
 return (
 <div className="Comment">
 <div className="UserInfo">
 <Avatar user={props.author} />
 <div className="UserInfo-name">
 {props.author.name}
 </div>
 </div>
 <div className="Comment-text">
 {props.text}
 </div>
 <div className="Comment-date">
 {formatDate(props.date)}
 </div>
 </div>
);
}

Next, we will extract a UserInfo component that renders an Avatar next to the user’s name:

function UserInfo(props) {
 return (
 <div className="UserInfo">
 <Avatar user={props.user} />
 <div className="UserInfo-name">
 {props.user.name}
 </div>
 </div>
);
}

This lets us simplify Comment even further:

function Comment(props) {
 return (
 <div className="Comment">
 <UserInfo user={props.author} />
 <div className="Comment-text">
 {props.text}
 </div>
 <div className="Comment-date">
 {formatDate(props.date)}
 </div>
 </div>
);
}

Try it on CodePen

Extracting components might seem like grunt work at first, but having a palette of reusable components pays off in larger apps. A good rule of thumb is that if a part of your UI is used several times (Button, Panel, Avatar), or is complex enough on its own (App, FeedStory, Comment), it is a good candidate to be extracted to a separate component.

Props are Read-Only

Whether you declare a component as a function or a class, it must never modify its own props. Consider this sum function:

function sum(a, b) {
 return a + b;
}

Such functions are called “pure” because they do not attempt to change their inputs, and always return the same result for the same inputs.

In contrast, this function is impure because it changes its own input:

function withdraw(account, amount) {
 account.total -= amount;
}

React is pretty flexible but it has a single strict rule:

All React components must act like pure functions with respect to their props.

Of course, application UIs are dynamic and change over time. In the next section, we will introduce a new concept of “state”. State allows React components to change their output over time in response to user actions, network responses, and anything else, without violating this rule.

State and Lifecycle

This page introduces the concept of state and lifecycle in a React component. You can find a detailed component API reference here.

Consider the ticking clock example from one of the previous sections. In Rendering Elements, we have only learned one way to update the UI. We call root.render() to change the rendered output:

const root = ReactDOM.createRoot(document.getElementById('root'));

function tick() {
 const element = (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {new Date().toLocaleTimeString()}.</h2>
 </div>
);
 root.render(element);
}

setInterval(tick, 1000);

Try it on CodePen

In this section, we will learn how to make the Clock component truly reusable and encapsulated. It will set up its own timer and update itself every second.

We can start by encapsulating how the clock looks:

const root = ReactDOM.createRoot(document.getElementById('root'));

function Clock(props) {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {props.date.toLocaleTimeString()}.</h2>
 </div>
);
}

function tick() {
 root.render(<Clock date={new Date()} />);
}

setInterval(tick, 1000);

Try it on CodePen

However, it misses a crucial requirement: the fact that the Clock sets up a timer and updates the UI every second should be an implementation detail of the Clock.

Ideally we want to write this once and have the Clock update itself:

root.render(<Clock />);

To implement this, we need to add “state” to the Clock component.

State is similar to props, but it is private and fully controlled by the component.

Converting a Function to a Class

You can convert a function component like Clock to a class in five steps:

	Create an ES6 class, with the same name, that extends React.Component.

	Add a single empty method to it called render().

	Move the body of the function into the render() method.

	Replace props with this.props in the render() body.

	Delete the remaining empty function declaration.

class Clock extends React.Component {
 render() {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {this.props.date.toLocaleTimeString()}.</h2>
 </div>
);
 }
}

Try it on CodePen

Clock is now defined as a class rather than a function.

The render method will be called each time an update happens, but as long as we render <Clock /> into the same DOM node, only a single instance of the Clock class will be used. This lets us use additional features such as local state and lifecycle methods.

Adding Local State to a Class

We will move the date from props to state in three steps:

	Replace this.props.date with this.state.date in the render() method:

class Clock extends React.Component {
 render() {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
 </div>
);
 }
}

	Add a class constructor that assigns the initial this.state:

class Clock extends React.Component {
 constructor(props) {
 super(props);
 this.state = {date: new Date()};
 }

 render() {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
 </div>
);
 }
}

Note how we pass props to the base constructor:

 constructor(props) {
 super(props);
 this.state = {date: new Date()};
 }

Class components should always call the base constructor with props.

	Remove the date prop from the <Clock /> element:

root.render(<Clock />);

We will later add the timer code back to the component itself.

The result looks like this:

class Clock extends React.Component {
 constructor(props) {
 super(props);
 this.state = {date: new Date()};
 }

 render() {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
 </div>
);
 }
}

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Clock />);

Try it on CodePen

Next, we’ll make the Clock set up its own timer and update itself every second.

Adding Lifecycle Methods to a Class

In applications with many components, it’s very important to free up resources taken by the components when they are destroyed.

We want to set up a timer whenever the Clock is rendered to the DOM for the first time. This is called “mounting” in React.

We also want to clear that timer whenever the DOM produced by the Clock is removed. This is called “unmounting” in React.

We can declare special methods on the component class to run some code when a component mounts and unmounts:

class Clock extends React.Component {
 constructor(props) {
 super(props);
 this.state = {date: new Date()};
 }

 componentDidMount() {

 }

 componentWillUnmount() {

 }

 render() {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
 </div>
);
 }
}

These methods are called “lifecycle methods”.

The componentDidMount() method runs after the component output has been rendered to the DOM. This is a good place to set up a timer:

 componentDidMount() {
 this.timerID = setInterval(
 () => this.tick(),
 1000
);
 }

Note how we save the timer ID right on this (this.timerID).

While this.props is set up by React itself and this.state has a special meaning, you are free to add additional fields to the class manually if you need to store something that doesn’t participate in the data flow (like a timer ID).

We will tear down the timer in the componentWillUnmount() lifecycle method:

 componentWillUnmount() {
 clearInterval(this.timerID);
 }

Finally, we will implement a method called tick() that the Clock component will run every second.

It will use this.setState() to schedule updates to the component local state:

class Clock extends React.Component {
 constructor(props) {
 super(props);
 this.state = {date: new Date()};
 }

 componentDidMount() {
 this.timerID = setInterval(
 () => this.tick(),
 1000
);
 }

 componentWillUnmount() {
 clearInterval(this.timerID);
 }

 tick() {
 this.setState({
 date: new Date()
 });
 }

 render() {
 return (
 <div>
 <h1>Hello, world!</h1>
 <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
 </div>
);
 }
}

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Clock />);

Try it on CodePen

Now the clock ticks every second.

Let’s quickly recap what’s going on and the order in which the methods are called:

	When <Clock /> is passed to root.render(), React calls the constructor of the Clock component. Since Clock needs to display the current time, it initializes this.state with an object including the current time. We will later update this state.

	React then calls the Clock component’s render() method. This is how React learns what should be displayed on the screen. React then updates the DOM to match the Clock’s render output.

	When the Clock output is inserted in the DOM, React calls the componentDidMount() lifecycle method. Inside it, the Clock component asks the browser to set up a timer to call the component’s tick() method once a second.

	Every second the browser calls the tick() method. Inside it, the Clock component schedules a UI update by calling setState() with an object containing the current time. Thanks to the setState() call, React knows the state has changed, and calls the render() method again to learn what should be on the screen. This time, this.state.date in the render() method will be different, and so the render output will include the updated time. React updates the DOM accordingly.

	If the Clock component is ever removed from the DOM, React calls the componentWillUnmount() lifecycle method so the timer is stopped.

Using State Correctly

There are three things you should know about setState().

Do Not Modify State Directly

For example, this will not re-render a component:

// Wrong
this.state.comment = 'Hello';

Instead, use setState():

// Correct
this.setState({comment: 'Hello'});

The only place where you can assign this.state is the constructor.

State Updates May Be Asynchronous

React may batch multiple setState() calls into a single update for performance.

Because this.props and this.state may be updated asynchronously, you should not rely on their values for calculating the next state.

For example, this code may fail to update the counter:

// Wrong
this.setState({
 counter: this.state.counter + this.props.increment,
});

To fix it, use a second form of setState() that accepts a function rather than an object. That function will receive the previous state as the first argument, and the props at the time the update is applied as the second argument:

// Correct
this.setState((state, props) => ({
 counter: state.counter + props.increment
}));

We used an arrow function above, but it also works with regular functions:

// Correct
this.setState(function(state, props) {
 return {
 counter: state.counter + props.increment
 };
});

State Updates are Merged

When you call setState(), React merges the object you provide into the current state.

For example, your state may contain several independent variables:

 constructor(props) {
 super(props);
 this.state = {
 posts: [],
 comments: []
 };
 }

Then you can update them independently with separate setState() calls:

 componentDidMount() {
 fetchPosts().then(response => {
 this.setState({
 posts: response.posts
 });
 });

 fetchComments().then(response => {
 this.setState({
 comments: response.comments
 });
 });
 }

The merging is shallow, so this.setState({comments}) leaves this.state.posts intact, but completely replaces this.state.comments.

The Data Flows Down

Neither parent nor child components can know if a certain component is stateful or stateless, and they shouldn’t care whether it is defined as a function or a class.

This is why state is often called local or encapsulated. It is not accessible to any component other than the one that owns and sets it.

A component may choose to pass its state down as props to its child components:

<FormattedDate date={this.state.date} />

The FormattedDate component would receive the date in its props and wouldn’t know whether it came from the Clock’s state, from the Clock’s props, or was typed by hand:

function FormattedDate(props) {
 return <h2>It is {props.date.toLocaleTimeString()}.</h2>;
}

Try it on CodePen

This is commonly called a “top-down” or “unidirectional” data flow. Any state is always owned by some specific component, and any data or UI derived from that state can only affect components “below” them in the tree.

If you imagine a component tree as a waterfall of props, each component’s state is like an additional water source that joins it at an arbitrary point but also flows down.

To show that all components are truly isolated, we can create an App component that renders three <Clock>s:

function App() {
 return (
 <div>
 <Clock />
 <Clock />
 <Clock />
 </div>
);
}

Try it on CodePen

Each Clock sets up its own timer and updates independently.

In React apps, whether a component is stateful or stateless is considered an implementation detail of the component that may change over time. You can use stateless components inside stateful components, and vice versa.

Handling Events

Handling events with React elements is very similar to handling events on DOM elements. There are some syntax differences:

	React events are named using camelCase, rather than lowercase.

	With JSX you pass a function as the event handler, rather than a string.

For example, the HTML:

<button onclick="activateLasers()">
 Activate Lasers
</button>

is slightly different in React:

<button onClick={activateLasers}>
 Activate Lasers
</button>

Another difference is that you cannot return false to prevent default behavior in React. You must call preventDefault explicitly. For example, with plain HTML, to prevent the default form behavior of submitting, you can write:

<form onsubmit="console.log('You clicked submit.'); return false">
 <button type="submit">Submit</button>
</form>

In React, this could instead be:

function Form() {
 function handleSubmit(e) {
 e.preventDefault();
 console.log('You clicked submit.');
 }

 return (
 <form onSubmit={handleSubmit}>
 <button type="submit">Submit</button>
 </form>
);
}

Here, e is a synthetic event. React defines these synthetic events according to the W3C spec, so you don’t need to worry about cross-browser compatibility. React events do not work exactly the same as native events. See the SyntheticEvent reference guide to learn more.

When using React, you generally don’t need to call addEventListener to add listeners to a DOM element after it is created. Instead, just provide a listener when the element is initially rendered.

When you define a component using an ES6 class, a common pattern is for an event handler to be a method on the class. For example, this Toggle component renders a button that lets the user toggle between “ON” and “OFF” states:

class Toggle extends React.Component {
 constructor(props) {
 super(props);
 this.state = {isToggleOn: true};

 // This binding is necessary to make `this` work in the callback
 this.handleClick = this.handleClick.bind(this);
 }

 handleClick() {
 this.setState(prevState => ({
 isToggleOn: !prevState.isToggleOn
 }));
 }

 render() {
 return (
 <button onClick={this.handleClick}>
 {this.state.isToggleOn ? 'ON' : 'OFF'}
 </button>
);
 }
}

Try it on CodePen

You have to be careful about the meaning of this in JSX callbacks. In JavaScript, class methods are not bound by default. If you forget to bind this.handleClick and pass it to onClick, this will be undefined when the function is actually called.

This is not React-specific behavior; it is a part of how functions work in JavaScript. Generally, if you refer to a method without () after it, such as onClick={this.handleClick}, you should bind that method.

If calling bind annoys you, there are two ways you can get around this. You can use public class fields syntax to correctly bind callbacks:

class LoggingButton extends React.Component {
 // This syntax ensures `this` is bound within handleClick.
 handleClick = () => {
 console.log('this is:', this);
 };

 render() {
 return (
 <button onClick={this.handleClick}>
 Click me
 </button>
);
 }
}

This syntax is enabled by default in Create React App.

If you aren’t using class fields syntax, you can use an arrow function in the callback:

class LoggingButton extends React.Component {
 handleClick() {
 console.log('this is:', this);
 }

 render() {
 // This syntax ensures `this` is bound within handleClick
 return (
 <button onClick={() => this.handleClick()}>
 Click me
 </button>
);
 }
}

The problem with this syntax is that a different callback is created each time the LoggingButton renders. In most cases, this is fine. However, if this callback is passed as a prop to lower components, those components might do an extra re-rendering. We generally recommend binding in the constructor or using the class fields syntax, to avoid this sort of performance problem.

Passing Arguments to Event Handlers

Inside a loop, it is common to want to pass an extra parameter to an event handler. For example, if id is the row ID, either of the following would work:

<button onClick={(e) => this.deleteRow(id, e)}>Delete Row</button>
<button onClick={this.deleteRow.bind(this, id)}>Delete Row</button>

The above two lines are equivalent, and use arrow functions and Function.prototype.bind respectively.

In both cases, the e argument representing the React event will be passed as a second argument after the ID. With an arrow function, we have to pass it explicitly, but with bind any further arguments are automatically forwarded.

Conditional Rendering

In React, you can create distinct components that encapsulate behavior you need. Then, you can render only some of them, depending on the state of your application.

Conditional rendering in React works the same way conditions work in JavaScript. Use JavaScript operators like if or the conditional operator to create elements representing the current state, and let React update the UI to match them.

Consider these two components:

function UserGreeting(props) {
 return <h1>Welcome back!</h1>;
}

function GuestGreeting(props) {
 return <h1>Please sign up.</h1>;
}

We’ll create a Greeting component that displays either of these components depending on whether a user is logged in:

function Greeting(props) {
 const isLoggedIn = props.isLoggedIn;
 if (isLoggedIn) {
 return <UserGreeting />;
 }
 return <GuestGreeting />;
}

const root = ReactDOM.createRoot(document.getElementById('root'));
// Try changing to isLoggedIn={true}:
root.render(<Greeting isLoggedIn={false} />);

Try it on CodePen

This example renders a different greeting depending on the value of isLoggedIn prop.

Element Variables

You can use variables to store elements. This can help you conditionally render a part of the component while the rest of the output doesn’t change.

Consider these two new components representing Logout and Login buttons:

function LoginButton(props) {
 return (
 <button onClick={props.onClick}>
 Login
 </button>
);
}

function LogoutButton(props) {
 return (
 <button onClick={props.onClick}>
 Logout
 </button>
);
}

In the example below, we will create a stateful component called LoginControl.

It will render either <LoginButton /> or <LogoutButton /> depending on its current state. It will also render a <Greeting /> from the previous example:

class LoginControl extends React.Component {
 constructor(props) {
 super(props);
 this.handleLoginClick = this.handleLoginClick.bind(this);
 this.handleLogoutClick = this.handleLogoutClick.bind(this);
 this.state = {isLoggedIn: false};
 }

 handleLoginClick() {
 this.setState({isLoggedIn: true});
 }

 handleLogoutClick() {
 this.setState({isLoggedIn: false});
 }

 render() {
 const isLoggedIn = this.state.isLoggedIn;
 let button;

 if (isLoggedIn) {
 button = <LogoutButton onClick={this.handleLogoutClick} />;
 } else {
 button = <LoginButton onClick={this.handleLoginClick} />;
 }

 return (
 <div>
 <Greeting isLoggedIn={isLoggedIn} />
 {button}
 </div>
);
 }
}

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<LoginControl />);

Try it on CodePen

While declaring a variable and using an if statement is a fine way to conditionally render a component, sometimes you might want to use a shorter syntax. There are a few ways to inline conditions in JSX, explained below.

Inline If with Logical && Operator

You may embed expressions in JSX by wrapping them in curly braces. This includes the JavaScript logical && operator. It can be handy for conditionally including an element:

function Mailbox(props) {
 const unreadMessages = props.unreadMessages;
 return (
 <div>
 <h1>Hello!</h1>
 {unreadMessages.length > 0 &&
 <h2>
 You have {unreadMessages.length} unread messages.
 </h2>
 }
 </div>
);
}

const messages = ['React', 'Re: React', 'Re:Re: React'];

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Mailbox unreadMessages={messages} />);

Try it on CodePen

It works because in JavaScript, true && expression always evaluates to expression, and false && expression always evaluates to false.

Therefore, if the condition is true, the element right after && will appear in the output. If it is false, React will ignore and skip it.

Note that returning a falsy expression will still cause the element after && to be skipped but will return the falsy expression. In the example below, <div>0</div> will be returned by the render method.

render() {
 const count = 0;
 return (
 <div>
 {count && <h1>Messages: {count}</h1>}
 </div>
);
}

Inline If-Else with Conditional Operator

Another method for conditionally rendering elements inline is to use the JavaScript conditional operator condition ? true : false.

In the example below, we use it to conditionally render a small block of text.

render() {
 const isLoggedIn = this.state.isLoggedIn;
 return (
 <div>
 The user is {isLoggedIn ? 'currently' : 'not'} logged in.
 </div>
);
}

It can also be used for larger expressions although it is less obvious what’s going on:

render() {
 const isLoggedIn = this.state.isLoggedIn;
 return (
 <div>
 {isLoggedIn
 ? <LogoutButton onClick={this.handleLogoutClick} />
 : <LoginButton onClick={this.handleLoginClick} />
 }
 </div>
);
}

Just like in JavaScript, it is up to you to choose an appropriate style based on what you and your team consider more readable. Also remember that whenever conditions become too complex, it might be a good time to extract a component.

Preventing Component from Rendering

In rare cases you might want a component to hide itself even though it was rendered by another component. To do this return null instead of its render output.

In the example below, the <WarningBanner /> is rendered depending on the value of the prop called warn. If the value of the prop is false, then the component does not render:

function WarningBanner(props) {
 if (!props.warn) {
 return null;
 }

 return (
 <div className="warning">
 Warning!
 </div>
);
}

class Page extends React.Component {
 constructor(props) {
 super(props);
 this.state = {showWarning: true};
 this.handleToggleClick = this.handleToggleClick.bind(this);
 }

 handleToggleClick() {
 this.setState(state => ({
 showWarning: !state.showWarning
 }));
 }

 render() {
 return (
 <div>
 <WarningBanner warn={this.state.showWarning} />
 <button onClick={this.handleToggleClick}>
 {this.state.showWarning ? 'Hide' : 'Show'}
 </button>
 </div>
);
 }
}

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Page />);

Try it on CodePen

Returning null from a component’s render method does not affect the firing of the component’s lifecycle methods. For instance componentDidUpdate will still be called.

Lists and Keys

First, let’s review how you transform lists in JavaScript.

Given the code below, we use the map() function to take an array of numbers and double their values. We assign the new array returned by map() to the variable doubled and log it:

const numbers = [1, 2, 3, 4, 5];
const doubled = numbers.map((number) => number * 2);
console.log(doubled);

This code logs [2, 4, 6, 8, 10] to the console.

In React, transforming arrays into lists of elements is nearly identical.

Rendering Multiple Components

You can build collections of elements and include them in JSX using curly braces {}.

Below, we loop through the numbers array using the JavaScript map() function. We return a element for each item. Finally, we assign the resulting array of elements to listItems:

const numbers = [1, 2, 3, 4, 5];
const listItems = numbers.map((number) =>
 {number}
);

Then, we can include the entire listItems array inside a element:

{listItems}

Try it on CodePen

This code displays a bullet list of numbers between 1 and 5.

Basic List Component

Usually you would render lists inside a component.

We can refactor the previous example into a component that accepts an array of numbers and outputs a list of elements.

function NumberList(props) {
 const numbers = props.numbers;
 const listItems = numbers.map((number) =>
 {number}
);
 return (
 {listItems}
);
}

const numbers = [1, 2, 3, 4, 5];
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<NumberList numbers={numbers} />);

When you run this code, you’ll be given a warning that a key should be provided for list items. A “key” is a special string attribute you need to include when creating lists of elements. We’ll discuss why it’s important in the next section.

Let’s assign a key to our list items inside numbers.map() and fix the missing key issue.

function NumberList(props) {
 const numbers = props.numbers;
 const listItems = numbers.map((number) =>
 <li key={number.toString()}>
 {number}

);
 return (
 {listItems}
);
}

Try it on CodePen

Keys

Keys help React identify which items have changed, are added, or are removed. Keys should be given to the elements inside the array to give the elements a stable identity:

const numbers = [1, 2, 3, 4, 5];
const listItems = numbers.map((number) =>
 <li key={number.toString()}>
 {number}

);

The best way to pick a key is to use a string that uniquely identifies a list item among its siblings. Most often you would use IDs from your data as keys:

const todoItems = todos.map((todo) =>
 <li key={todo.id}>
 {todo.text}

);

When you don’t have stable IDs for rendered items, you may use the item index as a key as a last resort:

const todoItems = todos.map((todo, index) =>
 // Only do this if items have no stable IDs
 <li key={index}>
 {todo.text}

);

We don’t recommend using indexes for keys if the order of items may change. This can negatively impact performance and may cause issues with component state. Check out Robin Pokorny’s article for an in-depth explanation on the negative impacts of using an index as a key. If you choose not to assign an explicit key to list items then React will default to using indexes as keys.

Here is an in-depth explanation about why keys are necessary if you’re interested in learning more.

Extracting Components with Keys

Keys only make sense in the context of the surrounding array.

For example, if you extract a ListItem component, you should keep the key on the <ListItem /> elements in the array rather than on the element in the ListItem itself.

Example: Incorrect Key Usage

function ListItem(props) {
 const value = props.value;
 return (
 // Wrong! There is no need to specify the key here:
 <li key={value.toString()}>
 {value}

);
}

function NumberList(props) {
 const numbers = props.numbers;
 const listItems = numbers.map((number) =>
 // Wrong! The key should have been specified here:
 <ListItem value={number} />
);
 return (

 {listItems}

);
}

Example: Correct Key Usage

function ListItem(props) {
 // Correct! There is no need to specify the key here:
 return {props.value};
}

function NumberList(props) {
 const numbers = props.numbers;
 const listItems = numbers.map((number) =>
 // Correct! Key should be specified inside the array.
 <ListItem key={number.toString()} value={number} />
);
 return (

 {listItems}

);
}

Try it on CodePen

A good rule of thumb is that elements inside the map() call need keys.

Keys Must Only Be Unique Among Siblings

Keys used within arrays should be unique among their siblings. However, they don’t need to be globally unique. We can use the same keys when we produce two different arrays:

function Blog(props) {
 const sidebar = (

 {props.posts.map((post) =>
 <li key={post.id}>
 {post.title}

)}

);
 const content = props.posts.map((post) =>
 <div key={post.id}>
 <h3>{post.title}</h3>
 <p>{post.content}</p>
 </div>
);
 return (
 <div>
 {sidebar}
 <hr />
 {content}
 </div>
);
}

const posts = [
 {id: 1, title: 'Hello World', content: 'Welcome to learning React!'},
 {id: 2, title: 'Installation', content: 'You can install React from npm.'}
];

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Blog posts={posts} />);

Try it on CodePen

Keys serve as a hint to React but they don’t get passed to your components. If you need the same value in your component, pass it explicitly as a prop with a different name:

const content = posts.map((post) =>
 <Post
 key={post.id}
 id={post.id}
 title={post.title} />
);

With the example above, the Post component can read props.id, but not props.key.

Embedding map() in JSX

In the examples above we declared a separate listItems variable and included it in JSX:

function NumberList(props) {
 const numbers = props.numbers;
 const listItems = numbers.map((number) =>
 <ListItem key={number.toString()}
 value={number} />
);
 return (

 {listItems}

);
}

JSX allows embedding any expression in curly braces so we could inline the map() result:

function NumberList(props) {
 const numbers = props.numbers;
 return (

 {numbers.map((number) =>
 <ListItem key={number.toString()}
 value={number} />
)}

);
}

Try it on CodePen

Sometimes this results in clearer code, but this style can also be abused. Like in JavaScript, it is up to you to decide whether it is worth extracting a variable for readability. Keep in mind that if the map() body is too nested, it might be a good time to extract a component.

Forms

HTML form elements work a bit differently from other DOM elements in React, because form elements naturally keep some internal state. For example, this form in plain HTML accepts a single name:

<form>
 <label>
 Name:
 <input type="text" name="name" />
 </label>
 <input type="submit" value="Submit" />
</form>

This form has the default HTML form behavior of browsing to a new page when the user submits the form. If you want this behavior in React, it just works. But in most cases, it’s convenient to have a JavaScript function that handles the submission of the form and has access to the data that the user entered into the form. The standard way to achieve this is with a technique called “controlled components”.

Controlled Components

In HTML, form elements such as <input>, <textarea>, and <select> typically maintain their own state and update it based on user input. In React, mutable state is typically kept in the state property of components, and only updated with setState().

We can combine the two by making the React state be the “single source of truth”. Then the React component that renders a form also controls what happens in that form on subsequent user input. An input form element whose value is controlled by React in this way is called a “controlled component”.

For example, if we want to make the previous example log the name when it is submitted, we can write the form as a controlled component:

class NameForm extends React.Component {
 constructor(props) {
 super(props);
 this.state = {value: ''};

 this.handleChange = this.handleChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }

 handleChange(event) {
 this.setState({value: event.target.value});
 }

 handleSubmit(event) {
 alert('A name was submitted: ' + this.state.value);
 event.preventDefault();
 }

 render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <label>
 Name:
 <input type="text" value={this.state.value} onChange={this.handleChange} />
 </label>
 <input type="submit" value="Submit" />
 </form>
);
 }
}

Try it on CodePen

Since the value attribute is set on our form element, the displayed value will always be this.state.value, making the React state the source of truth. Since handleChange runs on every keystroke to update the React state, the displayed value will update as the user types.

With a controlled component, the input’s value is always driven by the React state. While this means you have to type a bit more code, you can now pass the value to other UI elements too, or reset it from other event handlers.

The textarea Tag

In HTML, a <textarea> element defines its text by its children:

<textarea>
 Hello there, this is some text in a text area
</textarea>

In React, a <textarea> uses a value attribute instead. This way, a form using a <textarea> can be written very similarly to a form that uses a single-line input:

class EssayForm extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 value: 'Please write an essay about your favorite DOM element.'
 };

 this.handleChange = this.handleChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }

 handleChange(event) {
 this.setState({value: event.target.value});
 }

 handleSubmit(event) {
 alert('An essay was submitted: ' + this.state.value);
 event.preventDefault();
 }

 render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <label>
 Essay:
 <textarea value={this.state.value} onChange={this.handleChange} />
 </label>
 <input type="submit" value="Submit" />
 </form>
);
 }
}

Notice that this.state.value is initialized in the constructor, so that the text area starts off with some text in it.

The select Tag

In HTML, <select> creates a drop-down list. For example, this HTML creates a drop-down list of flavors:

<select>
 <option value="grapefruit">Grapefruit</option>
 <option value="lime">Lime</option>
 <option selected value="coconut">Coconut</option>
 <option value="mango">Mango</option>
</select>

Note that the Coconut option is initially selected, because of the selected attribute. React, instead of using this selected attribute, uses a value attribute on the root select tag. This is more convenient in a controlled component because you only need to update it in one place. For example:

class FlavorForm extends React.Component {
 constructor(props) {
 super(props);
 this.state = {value: 'coconut'};

 this.handleChange = this.handleChange.bind(this);
 this.handleSubmit = this.handleSubmit.bind(this);
 }

 handleChange(event) {
 this.setState({value: event.target.value});
 }

 handleSubmit(event) {
 alert('Your favorite flavor is: ' + this.state.value);
 event.preventDefault();
 }

 render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <label>
 Pick your favorite flavor:
 <select value={this.state.value} onChange={this.handleChange}>
 <option value="grapefruit">Grapefruit</option>
 <option value="lime">Lime</option>
 <option value="coconut">Coconut</option>
 <option value="mango">Mango</option>
 </select>
 </label>
 <input type="submit" value="Submit" />
 </form>
);
 }
}

Try it on CodePen

Overall, this makes it so that <input type="text">, <textarea>, and <select> all work very similarly - they all accept a value attribute that you can use to implement a controlled component.

Note

You can pass an array into the value attribute, allowing you to select multiple options in a select tag:

<select multiple={true} value={['B', 'C']}>

The file input Tag

In HTML, an <input type="file"> lets the user choose one or more files from their device storage to be uploaded to a server or manipulated by JavaScript via the File API.

<input type="file" />

Because its value is read-only, it is an uncontrolled component in React. It is discussed together with other uncontrolled components later in the documentation.

Handling Multiple Inputs

When you need to handle multiple controlled input elements, you can add a name attribute to each element and let the handler function choose what to do based on the value of event.target.name.

For example:

class Reservation extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 isGoing: true,
 numberOfGuests: 2
 };

 this.handleInputChange = this.handleInputChange.bind(this);
 }

 handleInputChange(event) {
 const target = event.target;
 const value = target.type === 'checkbox' ? target.checked : target.value;
 const name = target.name;

 this.setState({
 [name]: value
 });
 }

 render() {
 return (
 <form>
 <label>
 Is going:
 <input
 name="isGoing"
 type="checkbox"
 checked={this.state.isGoing}
 onChange={this.handleInputChange} />
 </label>

 <label>
 Number of guests:
 <input
 name="numberOfGuests"
 type="number"
 value={this.state.numberOfGuests}
 onChange={this.handleInputChange} />
 </label>
 </form>
);
 }
}

Try it on CodePen

Note how we used the ES6 computed property name syntax to update the state key corresponding to the given input name:

this.setState({
 [name]: value
});

It is equivalent to this ES5 code:

var partialState = {};
partialState[name] = value;
this.setState(partialState);

Also, since setState() automatically merges a partial state into the current state, we only needed to call it with the changed parts.

Controlled Input Null Value

Specifying the value prop on a controlled component prevents the user from changing the input unless you desire so. If you’ve specified a value but the input is still editable, you may have accidentally set value to undefined or null.

The following code demonstrates this. (The input is locked at first but becomes editable after a short delay.)

ReactDOM.createRoot(mountNode).render(<input value="hi" />);

setTimeout(function() {
 ReactDOM.createRoot(mountNode).render(<input value={null} />);
}, 1000);

Alternatives to Controlled Components

It can sometimes be tedious to use controlled components, because you need to write an event handler for every way your data can change and pipe all of the input state through a React component. This can become particularly annoying when you are converting a preexisting codebase to React, or integrating a React application with a non-React library. In these situations, you might want to check out uncontrolled components, an alternative technique for implementing input forms.

Fully-Fledged Solutions

If you’re looking for a complete solution including validation, keeping track of the visited fields, and handling form submission, Formik is one of the popular choices. However, it is built on the same principles of controlled components and managing state — so don’t neglect to learn them.

Lifting State Up

Often, several components need to reflect the same changing data. We recommend lifting the shared state up to their closest common ancestor. Let’s see how this works in action.

In this section, we will create a temperature calculator that calculates whether the water would boil at a given temperature.

We will start with a component called BoilingVerdict. It accepts the celsius temperature as a prop, and prints whether it is enough to boil the water:

function BoilingVerdict(props) {
 if (props.celsius >= 100) {
 return <p>The water would boil.</p>;
 }
 return <p>The water would not boil.</p>;
}

Next, we will create a component called Calculator. It renders an <input> that lets you enter the temperature, and keeps its value in this.state.temperature.

Additionally, it renders the BoilingVerdict for the current input value.

class Calculator extends React.Component {
 constructor(props) {
 super(props);
 this.handleChange = this.handleChange.bind(this);
 this.state = {temperature: ''};
 }

 handleChange(e) {
 this.setState({temperature: e.target.value});
 }

 render() {
 const temperature = this.state.temperature;
 return (
 <fieldset>
 <legend>Enter temperature in Celsius:</legend>
 <input
 value={temperature}
 onChange={this.handleChange} />
 <BoilingVerdict
 celsius={parseFloat(temperature)} />
 </fieldset>
);
 }
}

Try it on CodePen

Adding a Second Input

Our new requirement is that, in addition to a Celsius input, we provide a Fahrenheit input, and they are kept in sync.

We can start by extracting a TemperatureInput component from Calculator. We will add a new scale prop to it that can either be "c" or "f":

const scaleNames = {
 c: 'Celsius',
 f: 'Fahrenheit'
};

class TemperatureInput extends React.Component {
 constructor(props) {
 super(props);
 this.handleChange = this.handleChange.bind(this);
 this.state = {temperature: ''};
 }

 handleChange(e) {
 this.setState({temperature: e.target.value});
 }

 render() {
 const temperature = this.state.temperature;
 const scale = this.props.scale;
 return (
 <fieldset>
 <legend>Enter temperature in {scaleNames[scale]}:</legend>
 <input value={temperature}
 onChange={this.handleChange} />
 </fieldset>
);
 }
}

We can now change the Calculator to render two separate temperature inputs:

class Calculator extends React.Component {
 render() {
 return (
 <div>
 <TemperatureInput scale="c" />
 <TemperatureInput scale="f" />
 </div>
);
 }
}

Try it on CodePen

We have two inputs now, but when you enter the temperature in one of them, the other doesn’t update. This contradicts our requirement: we want to keep them in sync.

We also can’t display the BoilingVerdict from Calculator. The Calculator doesn’t know the current temperature because it is hidden inside the TemperatureInput.

Writing Conversion Functions

First, we will write two functions to convert from Celsius to Fahrenheit and back:

function toCelsius(fahrenheit) {
 return (fahrenheit - 32) * 5 / 9;
}

function toFahrenheit(celsius) {
 return (celsius * 9 / 5) + 32;
}

These two functions convert numbers. We will write another function that takes a string temperature and a converter function as arguments and returns a string. We will use it to calculate the value of one input based on the other input.

It returns an empty string on an invalid temperature, and it keeps the output rounded to the third decimal place:

function tryConvert(temperature, convert) {
 const input = parseFloat(temperature);
 if (Number.isNaN(input)) {
 return '';
 }
 const output = convert(input);
 const rounded = Math.round(output * 1000) / 1000;
 return rounded.toString();
}

For example, tryConvert('abc', toCelsius) returns an empty string, and tryConvert('10.22', toFahrenheit) returns '50.396'.

Lifting State Up

Currently, both TemperatureInput components independently keep their values in the local state:

class TemperatureInput extends React.Component {
 constructor(props) {
 super(props);
 this.handleChange = this.handleChange.bind(this);
 this.state = {temperature: ''};
 }

 handleChange(e) {
 this.setState({temperature: e.target.value});
 }

 render() {
 const temperature = this.state.temperature;
 // ...

However, we want these two inputs to be in sync with each other. When we update the Celsius input, the Fahrenheit input should reflect the converted temperature, and vice versa.

In React, sharing state is accomplished by moving it up to the closest common ancestor of the components that need it. This is called “lifting state up”. We will remove the local state from the TemperatureInput and move it into the Calculator instead.

If the Calculator owns the shared state, it becomes the “source of truth” for the current temperature in both inputs. It can instruct them both to have values that are consistent with each other. Since the props of both TemperatureInput components are coming from the same parent Calculator component, the two inputs will always be in sync.

Let’s see how this works step by step.

First, we will replace this.state.temperature with this.props.temperature in the TemperatureInput component. For now, let’s pretend this.props.temperature already exists, although we will need to pass it from the Calculator in the future:

 render() {
 // Before: const temperature = this.state.temperature;
 const temperature = this.props.temperature;
 // ...

We know that props are read-only. When the temperature was in the local state, the TemperatureInput could just call this.setState() to change it. However, now that the temperature is coming from the parent as a prop, the TemperatureInput has no control over it.

In React, this is usually solved by making a component “controlled”. Just like the DOM <input> accepts both a value and an onChange prop, so can the custom TemperatureInput accept both temperature and onTemperatureChange props from its parent Calculator.

Now, when the TemperatureInput wants to update its temperature, it calls this.props.onTemperatureChange:

 handleChange(e) {
 // Before: this.setState({temperature: e.target.value});
 this.props.onTemperatureChange(e.target.value);
 // ...

Note:

There is no special meaning to either temperature or onTemperatureChange prop names in custom components. We could have called them anything else, like name them value and onChange which is a common convention.

The onTemperatureChange prop will be provided together with the temperature prop by the parent Calculator component. It will handle the change by modifying its own local state, thus re-rendering both inputs with the new values. We will look at the new Calculator implementation very soon.

Before diving into the changes in the Calculator, let’s recap our changes to the TemperatureInput component. We have removed the local state from it, and instead of reading this.state.temperature, we now read this.props.temperature. Instead of calling this.setState() when we want to make a change, we now call this.props.onTemperatureChange(), which will be provided by the Calculator:

class TemperatureInput extends React.Component {
 constructor(props) {
 super(props);
 this.handleChange = this.handleChange.bind(this);
 }

 handleChange(e) {
 this.props.onTemperatureChange(e.target.value);
 }

 render() {
 const temperature = this.props.temperature;
 const scale = this.props.scale;
 return (
 <fieldset>
 <legend>Enter temperature in {scaleNames[scale]}:</legend>
 <input value={temperature}
 onChange={this.handleChange} />
 </fieldset>
);
 }
}

Now let’s turn to the Calculator component.

We will store the current input’s temperature and scale in its local state. This is the state we “lifted up” from the inputs, and it will serve as the “source of truth” for both of them. It is the minimal representation of all the data we need to know in order to render both inputs.

For example, if we enter 37 into the Celsius input, the state of the Calculator component will be:

{
 temperature: '37',
 scale: 'c'
}

If we later edit the Fahrenheit field to be 212, the state of the Calculator will be:

{
 temperature: '212',
 scale: 'f'
}

We could have stored the value of both inputs but it turns out to be unnecessary. It is enough to store the value of the most recently changed input, and the scale that it represents. We can then infer the value of the other input based on the current temperature and scale alone.

The inputs stay in sync because their values are computed from the same state:

class Calculator extends React.Component {
 constructor(props) {
 super(props);
 this.handleCelsiusChange = this.handleCelsiusChange.bind(this);
 this.handleFahrenheitChange = this.handleFahrenheitChange.bind(this);
 this.state = {temperature: '', scale: 'c'};
 }

 handleCelsiusChange(temperature) {
 this.setState({scale: 'c', temperature});
 }

 handleFahrenheitChange(temperature) {
 this.setState({scale: 'f', temperature});
 }

 render() {
 const scale = this.state.scale;
 const temperature = this.state.temperature;
 const celsius = scale === 'f' ? tryConvert(temperature, toCelsius) : temperature;
 const fahrenheit = scale === 'c' ? tryConvert(temperature, toFahrenheit) : temperature;

 return (
 <div>
 <TemperatureInput
 scale="c"
 temperature={celsius}
 onTemperatureChange={this.handleCelsiusChange} />
 <TemperatureInput
 scale="f"
 temperature={fahrenheit}
 onTemperatureChange={this.handleFahrenheitChange} />
 <BoilingVerdict
 celsius={parseFloat(celsius)} />
 </div>
);
 }
}

Try it on CodePen

Now, no matter which input you edit, this.state.temperature and this.state.scale in the Calculator get updated. One of the inputs gets the value as is, so any user input is preserved, and the other input value is always recalculated based on it.

Let’s recap what happens when you edit an input:

	React calls the function specified as onChange on the DOM <input>. In our case, this is the handleChange method in the TemperatureInput component.

	The handleChange method in the TemperatureInput component calls this.props.onTemperatureChange() with the new desired value. Its props, including onTemperatureChange, were provided by its parent component, the Calculator.

	When it previously rendered, the Calculator had specified that onTemperatureChange of the Celsius TemperatureInput is the Calculator’s handleCelsiusChange method, and onTemperatureChange of the Fahrenheit TemperatureInput is the Calculator’s handleFahrenheitChange method. So either of these two Calculator methods gets called depending on which input we edited.

	Inside these methods, the Calculator component asks React to re-render itself by calling this.setState() with the new input value and the current scale of the input we just edited.

	React calls the Calculator component’s render method to learn what the UI should look like. The values of both inputs are recomputed based on the current temperature and the active scale. The temperature conversion is performed here.

	React calls the render methods of the individual TemperatureInput components with their new props specified by the Calculator. It learns what their UI should look like.

	React calls the render method of the BoilingVerdict component, passing the temperature in Celsius as its props.

	React DOM updates the DOM with the boiling verdict and to match the desired input values. The input we just edited receives its current value, and the other input is updated to the temperature after conversion.

Every update goes through the same steps so the inputs stay in sync.

Lessons Learned

There should be a single “source of truth” for any data that changes in a React application. Usually, the state is first added to the component that needs it for rendering. Then, if other components also need it, you can lift it up to their closest common ancestor. Instead of trying to sync the state between different components, you should rely on the top-down data flow.

Lifting state involves writing more “boilerplate” code than two-way binding approaches, but as a benefit, it takes less work to find and isolate bugs. Since any state “lives” in some component and that component alone can change it, the surface area for bugs is greatly reduced. Additionally, you can implement any custom logic to reject or transform user input.

If something can be derived from either props or state, it probably s