

  React Docs

  v18.2.0

  react.org

  2022-08-14



React Docs
	License
	Installation	Getting Started
	Add React to a Website
	Create a New React App
	CDN Links
	Release Channels


	Main Concepts	Hello World
	Introducing JSX
	Rendering Elements
	Components and Props
	State and Lifecycle
	Handling Events
	Conditional Rendering
	Lists and Keys
	Forms
	Lifting State Up
	Composition vs Inheritance
	Thinking in React


	Advanced Guides	Accessibility
	Accessibility
	Code-Splitting
	Context
	Error Boundaries
	Forwarding Refs
	Fragments
	Higher-Order Components
	Integrating with Other Libraries
	JSX In Depth
	Optimizing Performance
	Portals
	Profiler API
	React Without ES6
	React Without JSX
	Reconciliation
	Refs and the DOM
	Render Props
	Static Type Checking
	Strict Mode
	Typechecking With PropTypes
	Uncontrolled Components
	Web Components


	API Reference	React Top-Level API
	React.Component
	ReactDOM
	ReactDOMClient
	ReactDOMServer
	DOM Elements
	SyntheticEvent
	Test Utilities
	Test Renderer
	JavaScript Environment Requirements
	Glossary of React Terms


	Hooks	Introducing Hooks
	Hooks at a Glance
	Using the State Hook
	Using the Effect Hook
	Rules of Hooks
	Building Your Own Hooks
	Hooks API Reference
	Hooks FAQ


	Testing	Testing Overview
	Testing Recipes
	Testing Environments


	Contributing	How to Contribute
	Codebase Overview
	Implementation Notes
	Design Principles


	FAQ	AJAX and APIs
	Babel, JSX, and Build Steps
	Passing Functions to Components
	Component State
	Styling and CSS
	File Structure
	Versioning Policy
	Virtual DOM and Internals





  
    	
      Title Page
    

    	
      Table of Contents
    

  




License

MIT License

Copyright (c) Facebook, Inc. and its affiliates.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.




Installation


Getting Started

This page is an overview of the React documentation and related resources.

React is a JavaScript library for building user interfaces. Learn what React is all about on our homepage or in the tutorial.




	Try React

	Learn React

	Staying Informed

	Versioned Documentation

	Something Missing?




Try React

React has been designed from the start for gradual adoption, and you can use as little or as much React as you need. Whether you want to get a taste of React, add some interactivity to a simple HTML page, or start a complex React-powered app, the links in this section will help you get started.


Online Playgrounds

If you’re interested in playing around with React, you can use an online code playground. Try a Hello World template on CodePen, CodeSandbox, or Stackblitz.

If you prefer to use your own text editor, you can also download this HTML file, edit it, and open it from the local filesystem in your browser. It does a slow runtime code transformation, so we’d only recommend using this for simple demos.



Add React to a Website

You can add React to an HTML page in one minute. You can then either gradually expand its presence, or keep it contained to a few dynamic widgets.



Create a New React App

When starting a React project, a simple HTML page with script tags might still be the best option. It only takes a minute to set up!

As your application grows, you might want to consider a more integrated setup. There are several JavaScript toolchains we recommend for larger applications. Each of them can work with little to no configuration and lets you take full advantage of the rich React ecosystem. Learn how.




Learn React

People come to React from different backgrounds and with different learning styles. Whether you prefer a more theoretical or a practical approach, we hope you’ll find this section helpful.


	If you prefer to learn by doing, start with our practical tutorial.

	If you prefer to learn concepts step by step, start with our guide to main concepts.



Like any unfamiliar technology, React does have a learning curve. With practice and some patience, you will get the hang of it.


First Examples

The React homepage contains a few small React examples with a live editor. Even if you don’t know anything about React yet, try changing their code and see how it affects the result.



React for Beginners

If you feel that the React documentation goes at a faster pace than you’re comfortable with, check out this overview of React by Tania Rascia. It introduces the most important React concepts in a detailed, beginner-friendly way. Once you’re done, give the documentation another try!



React for Designers

If you’re coming from a design background, these resources are a great place to get started.



JavaScript Resources

The React documentation assumes some familiarity with programming in the JavaScript language. You don’t have to be an expert, but it’s harder to learn both React and JavaScript at the same time.

We recommend going through this JavaScript overview to check your knowledge level. It will take you between 30 minutes and an hour but you will feel more confident learning React.


Tip

Whenever you get confused by something in JavaScript, MDN and javascript.info are great websites to check. There are also community support forums where you can ask for help.





Practical Tutorial

If you prefer to learn by doing, check out our practical tutorial. In this tutorial, we build a tic-tac-toe game in React. You might be tempted to skip it because you’re not into building games – but give it a chance. The techniques you’ll learn in the tutorial are fundamental to building any React apps, and mastering it will give you a much deeper understanding.



Step-by-Step Guide

If you prefer to learn concepts step by step, our guide to main concepts is the best place to start. Every next chapter in it builds on the knowledge introduced in the previous chapters so you won’t miss anything as you go along.



Thinking in React

Many React users credit reading Thinking in React as the moment React finally “clicked” for them. It’s probably the oldest React walkthrough but it’s still just as relevant.



Recommended Courses

Sometimes people find third-party books and video courses more helpful than the official documentation. We maintain a list of commonly recommended resources, some of which are free.



Advanced Concepts

Once you’re comfortable with the main concepts and played with React a little bit, you might be interested in more advanced topics. This section will introduce you to the powerful, but less commonly used React features like context and refs.



API Reference

This documentation section is useful when you want to learn more details about a particular React API. For example, React.Component API reference can provide you with details on how setState() works, and what different lifecycle methods are useful for.



Glossary and FAQ

The glossary contains an overview of the most common terms you’ll see in the React documentation. There is also a FAQ section dedicated to short questions and answers about common topics, including making AJAX requests, component state, and file structure.




Staying Informed

The React blog is the official source for the updates from the React team. Anything important, including release notes or deprecation notices, will be posted there first.

You can also follow the @reactjs account on Twitter, but you won’t miss anything essential if you only read the blog.

Not every React release deserves its own blog post, but you can find a detailed changelog for every release in the CHANGELOG.md file in the React repository, as well as on the Releases page.



Versioned Documentation

This documentation always reflects the latest stable version of React. Since React 16, you can find older versions of the documentation on a separate page. Note that documentation for past versions is snapshotted at the time of the release, and isn’t being continuously updated.



Something Missing?

If something is missing in the documentation or if you found some part confusing, please file an issue for the documentation repository with your suggestions for improvement, or tweet at the @reactjs account. We love hearing from you!




Add React to a Website

Use as little or as much React as you need.

React has been designed from the start for gradual adoption, and you can use as little or as much React as you need. Perhaps you only want to add some “sprinkles of interactivity” to an existing page. React components are a great way to do that.

The majority of websites aren’t, and don’t need to be, single-page apps. With a few lines of code and no build tooling, try React in a small part of your website. You can then either gradually expand its presence, or keep it contained to a few dynamic widgets.




	Add React in One Minute

	Optional: Try React with JSX (no bundler necessary!)




Add React in One Minute

In this section, we will show how to add a React component to an existing HTML page. You can follow along with your own website, or create an empty HTML file to practice.

There will be no complicated tools or install requirements – to complete this section, you only need an internet connection, and a minute of your time.

Optional: Download the full example (2KB zipped)


Step 1: Add a DOM Container to the HTML

First, open the HTML page you want to edit. Add an empty <div> tag to mark the spot where you want to display something with React. For example:

<!-- ... existing HTML ... -->

<div id="like_button_container"></div>

<!-- ... existing HTML ... -->

We gave this <div> a unique id HTML attribute. This will allow us to find it from the JavaScript code later and display a React component inside of it.


Tip

You can place a “container” <div> like this anywhere inside the <body> tag. You may have as many independent DOM containers on one page as you need. They are usually empty – React will replace any existing content inside DOM containers.





Step 2: Add the Script Tags

Next, add three <script> tags to the HTML page right before the closing </body> tag:

  <!-- ... other HTML ... -->

  <!-- Load React. -->
  <!-- Note: when deploying, replace "development.js" with "production.min.js". -->
  <script src="https://unpkg.com/react@18/umd/react.development.js" crossorigin></script>
  <script src="https://unpkg.com/react-dom@18/umd/react-dom.development.js" crossorigin></script>

  <!-- Load our React component. -->
  <script src="like_button.js"></script>

</body>

The first two tags load React. The third one will load your component code.



Step 3: Create a React Component

Create a file called like_button.js next to your HTML page.

Open this starter code and paste it into the file you created.


Tip

This code defines a React component called LikeButton. Don’t worry if you don’t understand it yet – we’ll cover the building blocks of React later in our hands-on tutorial and main concepts guide. For now, let’s just get it showing on the screen!



After the starter code, add three lines to the bottom of like_button.js:

// ... the starter code you pasted ...

const domContainer = document.querySelector('#like_button_container');
const root = ReactDOM.createRoot(domContainer);
root.render(e(LikeButton));

These three lines of code find the <div> we added to our HTML in the first step, create a React app with it, and then display our “Like” button React component inside of it.



That’s It!

There is no step four. You have just added the first React component to your website.

Check out the next sections for more tips on integrating React.

View the full example source code

Download the full example (2KB zipped)



Tip: Reuse a Component

Commonly, you might want to display React components in multiple places on the HTML page. Here is an example that displays the “Like” button three times and passes some data to it:

View the full example source code

Download the full example (2KB zipped)


Note

This strategy is mostly useful while React-powered parts of the page are isolated from each other. Inside React code, it’s easier to use component composition instead.





Tip: Minify JavaScript for Production

Before deploying your website to production, be mindful that unminified JavaScript can significantly slow down the page for your users.

If you already minify the application scripts, your site will be production-ready if you ensure that the deployed HTML loads the versions of React ending in production.min.js:

<script src="https://unpkg.com/react@18/umd/react.production.min.js" crossorigin></script>
<script src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js" crossorigin></script>


If you don’t have a minification step for your scripts, here’s one way to set it up.




Optional: Try React with JSX

In the examples above, we only relied on features that are natively supported by browsers. This is why we used a JavaScript function call to tell React what to display:

const e = React.createElement;

// Display a "Like" <button>
return e(
  'button',
  { onClick: () => this.setState({ liked: true }) },
  'Like'
);


However, React also offers an option to use JSX instead:

// Display a "Like" <button>
return (
  <button onClick={() => this.setState({ liked: true })}>
    Like
  </button>
);


These two code snippets are equivalent. While JSX is completely optional, many people find it helpful for writing UI code – both with React and with other libraries.

You can play with JSX using this online converter.


Quickly Try JSX

The quickest way to try JSX in your project is to add this <script> tag to your page:

<script src="https://unpkg.com/babel-standalone@6/babel.min.js"></script>


Now you can use JSX in any <script> tag by adding type="text/babel" attribute to it. Here is an example HTML file with JSX that you can download and play with.

This approach is fine for learning and creating simple demos. However, it makes your website slow and isn’t suitable for production. When you’re ready to move forward, remove this new <script> tag and the type="text/babel" attributes you’ve added. Instead, in the next section you will set up a JSX preprocessor to convert all your <script> tags automatically.



Add JSX to a Project

Adding JSX to a project doesn’t require complicated tools like a bundler or a development server. Essentially, adding JSX is a lot like adding a CSS preprocessor. The only requirement is to have Node.js installed on your computer.

Go to your project folder in the terminal, and paste these two commands:


	Step 1: Run npm init -y (if it fails, here’s a fix)

	Step 2: Run npm install babel-cli@6 babel-preset-react-app@3




Tip

We’re using npm here only to install the JSX preprocessor; you won’t need it for anything else. Both React and the application code can stay as <script> tags with no changes.



Congratulations! You just added a production-ready JSX setup to your project.



Run JSX Preprocessor

Create a folder called src and run this terminal command:

npx babel --watch src --out-dir . --presets react-app/prod


Note

npx is not a typo – it’s a package runner tool that comes with npm 5.2+.

If you see an error message saying “You have mistakenly installed the babel package”, you might have missed the previous step. Perform it in the same folder, and then try again.



Don’t wait for it to finish – this command starts an automated watcher for JSX.

If you now create a file called src/like_button.js with this JSX starter code, the watcher will create a preprocessed like_button.js with the plain JavaScript code suitable for the browser. When you edit the source file with JSX, the transform will re-run automatically.

As a bonus, this also lets you use modern JavaScript syntax features like classes without worrying about breaking older browsers. The tool we just used is called Babel, and you can learn more about it from its documentation.

If you notice that you’re getting comfortable with build tools and want them to do more for you, the next section describes some of the most popular and approachable toolchains. If not – those script tags will do just fine!





Create a New React App

Use an integrated toolchain for the best user and developer experience.

This page describes a few popular React toolchains which help with tasks like:


	Scaling to many files and components.

	Using third-party libraries from npm.

	Detecting common mistakes early.

	Live-editing CSS and JS in development.

	Optimizing the output for production.



The toolchains recommended on this page don’t require configuration to get started.


You Might Not Need a Toolchain

If you don’t experience the problems described above or don’t feel comfortable using JavaScript tools yet, consider adding React as a plain <script> tag on an HTML page, optionally with JSX.

This is also the easiest way to integrate React into an existing website. You can always add a larger toolchain if you find it helpful!



Recommended Toolchains

The React team primarily recommends these solutions:


	If you’re learning React or creating a new single-page app, use Create React App.

	If you’re building a server-rendered website with Node.js, try Next.js.

	If you’re building a static content-oriented website, try Gatsby.

	If you’re building a component library or integrating with an existing codebase, try More Flexible Toolchains.




Create React App

Create React App is a comfortable environment for learning React, and is the best way to start building a new single-page application in React.

It sets up your development environment so that you can use the latest JavaScript features, provides a nice developer experience, and optimizes your app for production. You’ll need to have Node >= 14.0.0 and npm >= 5.6 on your machine. To create a project, run:

npx create-react-app my-app
cd my-app
npm start



Note

npx on the first line is not a typo – it’s a package runner tool that comes with npm 5.2+.



Create React App doesn’t handle backend logic or databases; it just creates a frontend build pipeline, so you can use it with any backend you want. Under the hood, it uses Babel and webpack, but you don’t need to know anything about them.

When you’re ready to deploy to production, running npm run build will create an optimized build of your app in the build folder. You can learn more about Create React App from its README and the User Guide.



Next.js

Next.js is a popular and lightweight framework for static and server‑rendered applications built with React. It includes styling and routing solutions out of the box, and assumes that you’re using Node.js as the server environment.

Learn Next.js from its official guide.



Gatsby

Gatsby is the best way to create static websites with React. It lets you use React components, but outputs pre-rendered HTML and CSS to guarantee the fastest load time.

Learn Gatsby from its official guide and a gallery of starter kits.



More Flexible Toolchains

The following toolchains offer more flexibility and choice. We recommend them to more experienced users:


	Neutrino combines the power of webpack with the simplicity of presets, and includes a preset for React apps and React components.


	Nx is a toolkit for full-stack monorepo development, with built-in support for React, Next.js, Express, and more.


	Parcel is a fast, zero configuration web application bundler that works with React.


	Razzle is a server-rendering framework that doesn’t require any configuration, but offers more flexibility than Next.js.







Creating a Toolchain from Scratch

A JavaScript build toolchain typically consists of:


	A package manager, such as Yarn or npm. It lets you take advantage of a vast ecosystem of third-party packages, and easily install or update them.


	A bundler, such as webpack or Parcel. It lets you write modular code and bundle it together into small packages to optimize load time.


	A compiler such as Babel. It lets you write modern JavaScript code that still works in older browsers.




If you prefer to set up your own JavaScript toolchain from scratch, check out this guide that re-creates some of the Create React App functionality.

Don’t forget to ensure your custom toolchain is correctly set up for production.




CDN Links

Both React and ReactDOM are available over a CDN.

<script crossorigin src="https://unpkg.com/react@18/umd/react.development.js"></script>
<script crossorigin src="https://unpkg.com/react-dom@18/umd/react-dom.development.js"></script>


The versions above are only meant for development, and are not suitable for production. Minified and optimized production versions of React are available at:

<script crossorigin src="https://unpkg.com/react@18/umd/react.production.min.js"></script>
<script crossorigin src="https://unpkg.com/react-dom@18/umd/react-dom.production.min.js"></script>


To load a specific version of react and react-dom, replace 18 with the version number.


Why the crossorigin Attribute?

If you serve React from a CDN, we recommend to keep the crossorigin attribute set:

<script crossorigin src="..."></script>


We also recommend to verify that the CDN you are using sets the Access-Control-Allow-Origin: * HTTP header:


[image: Access-Control-Allow-Origin: *]
Access-Control-Allow-Origin: *

This enables a better error handling experience in React 16 and later.




Release Channels

React relies on a thriving open source community to file bug reports, open pull requests, and submit RFCs. To encourage feedback we sometimes share special builds of React that include unreleased features.


This document will be most relevant to developers who work on frameworks, libraries, or developer tooling. Developers who use React primarily to build user-facing applications should not need to worry about our prerelease channels.



Each of React’s release channels is designed for a distinct use case:


	Latest is for stable, semver React releases. It’s what you get when you install React from npm. This is the channel you’re already using today. Use this for all user-facing React applications.

	Next tracks the main branch of the React source code repository. Think of these as release candidates for the next minor semver release. Use this for integration testing between React and third party projects.

	Experimental includes experimental APIs and features that aren’t available in the stable releases. These also track the main branch, but with additional feature flags turned on. Use this to try out upcoming features before they are released.



All releases are published to npm, but only Latest uses semantic versioning. Prereleases (those in the Next and Experimental channels) have versions generated from a hash of their contents and the commit date, e.g. 0.0.0-68053d940-20210623 for Next and 0.0.0-experimental-68053d940-20210623 for Experimental.

The only officially supported release channel for user-facing applications is Latest. Next and Experimental releases are provided for testing purposes only, and we provide no guarantees that behavior won’t change between releases. They do not follow the semver protocol that we use for releases from Latest.

By publishing prereleases to the same registry that we use for stable releases, we are able to take advantage of the many tools that support the npm workflow, like unpkg and CodeSandbox.


Latest Channel

Latest is the channel used for stable React releases. It corresponds to the latest tag on npm. It is the recommended channel for all React apps that are shipped to real users.

If you’re not sure which channel you should use, it’s Latest. If you’re a React developer, this is what you’re already using.

You can expect updates to Latest to be extremely stable. Versions follow the semantic versioning scheme. Learn more about our commitment to stability and incremental migration in our versioning policy.



Next Channel

The Next channel is a prerelease channel that tracks the main branch of the React repository. We use prereleases in the Next channel as release candidates for the Latest channel. You can think of Next as a superset of Latest that is updated more frequently.

The degree of change between the most recent Next release and the most recent Latest release is approximately the same as you would find between two minor semver releases. However, the Next channel does not conform to semantic versioning. You should expect occasional breaking changes between successive releases in the Next channel.

Do not use prereleases in user-facing applications.

Releases in Next are published with the next tag on npm. Versions are generated from a hash of the build’s contents and the commit date, e.g. 0.0.0-68053d940-20210623.


Using the Next Channel for Integration Testing

The Next channel is designed to support integration testing between React and other projects.

All changes to React go through extensive internal testing before they are released to the public. However, there are a myriad of environments and configurations used throughout the React ecosystem, and it’s not possible for us to test against every single one.

If you’re the author of a third party React framework, library, developer tool, or similar infrastructure-type project, you can help us keep React stable for your users and the entire React community by periodically running your test suite against the most recent changes. If you’re interested, follow these steps:


	Set up a cron job using your preferred continuous integration platform. Cron jobs are supported by both CircleCI and Travis CI.


	In the cron job, update your React packages to the most recent React release in the Next channel, using next tag on npm. Using the npm cli:

npm update react@next react-dom@next

Or yarn:

yarn upgrade react@next react-dom@next


	Run your test suite against the updated packages.


	If everything passes, great! You can expect that your project will work with the next minor React release.


	If something breaks unexpectedly, please let us know by filing an issue.




A project that uses this workflow is Next.js. (No pun intended! Seriously!) You can refer to their CircleCI configuration as an example.




Experimental Channel

Like Next, the Experimental channel is a prerelease channel that tracks the main branch of the React repository. Unlike Next, Experimental releases include additional features and APIs that are not ready for wider release.

Usually, an update to Next is accompanied by a corresponding update to Experimental. They are based on the same source revision, but are built using a different set of feature flags.

Experimental releases may be significantly different than releases to Next and Latest. Do not use Experimental releases in user-facing applications. You should expect frequent breaking changes between releases in the Experimental channel.

Releases in Experimental are published with the experimental tag on npm. Versions are generated from a hash of the build’s contents and the commit date, e.g. 0.0.0-experimental-68053d940-20210623.


What Goes Into an Experimental Release?

Experimental features are ones that are not ready to be released to the wider public, and may change drastically before they are finalized. Some experiments may never be finalized – the reason we have experiments is to test the viability of proposed changes.

For example, if the Experimental channel had existed when we announced Hooks, we would have released Hooks to the Experimental channel weeks before they were available in Latest.

You may find it valuable to run integration tests against Experimental. This is up to you. However, be advised that Experimental is even less stable than Next. We do not guarantee any stability between Experimental releases.



How Can I Learn More About Experimental Features?

Experimental features may or may not be documented. Usually, experiments aren’t documented until they are close to shipping in Next or Latest.

If a feature is not documented, they may be accompanied by an RFC.

We will post to the React blog when we’re ready to announce new experiments, but that doesn’t mean we will publicize every experiment.

You can always refer to our public GitHub repository’s history for a comprehensive list of changes.







Main Concepts


Hello World

The smallest React example looks like this:

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<h1>Hello, world!</h1>);


It displays a heading saying “Hello, world!” on the page.

Try it on CodePen

Click the link above to open an online editor. Feel free to make some changes, and see how they affect the output. Most pages in this guide will have editable examples like this one.


How to Read This Guide

In this guide, we will examine the building blocks of React apps: elements and components. Once you master them, you can create complex apps from small reusable pieces.


Tip

This guide is designed for people who prefer learning concepts step by step. If you prefer to learn by doing, check out our practical tutorial. You might find this guide and the tutorial complementary to each other.



This is the first chapter in a step-by-step guide about main React concepts. You can find a list of all its chapters in the navigation sidebar. If you’re reading this from a mobile device, you can access the navigation by pressing the button in the bottom right corner of your screen.

Every chapter in this guide builds on the knowledge introduced in earlier chapters. You can learn most of React by reading the “Main Concepts” guide chapters in the order they appear in the sidebar. For example, “Introducing JSX” is the next chapter after this one.



Knowledge Level Assumptions

React is a JavaScript library, and so we’ll assume you have a basic understanding of the JavaScript language. If you don’t feel very confident, we recommend going through a JavaScript tutorial to check your knowledge level and enable you to follow along this guide without getting lost. It might take you between 30 minutes and an hour, but as a result you won’t have to feel like you’re learning both React and JavaScript at the same time.


Note

This guide occasionally uses some newer JavaScript syntax in the examples. If you haven’t worked with JavaScript in the last few years, these three points should get you most of the way.





Let’s Get Started!

Keep scrolling down, and you’ll find the link to the next chapter of this guide right before the website footer.




Introducing JSX

Consider this variable declaration:

const element = <h1>Hello, world!</h1>;


This funny tag syntax is neither a string nor HTML.

It is called JSX, and it is a syntax extension to JavaScript. We recommend using it with React to describe what the UI should look like. JSX may remind you of a template language, but it comes with the full power of JavaScript.

JSX produces React “elements”. We will explore rendering them to the DOM in the next section. Below, you can find the basics of JSX necessary to get you started.


Why JSX?

React embraces the fact that rendering logic is inherently coupled with other UI logic: how events are handled, how the state changes over time, and how the data is prepared for display.

Instead of artificially separating technologies by putting markup and logic in separate files, React separates concerns with loosely coupled units called “components” that contain both. We will come back to components in a further section, but if you’re not yet comfortable putting markup in JS, this talk might convince you otherwise.

React doesn’t require using JSX, but most people find it helpful as a visual aid when working with UI inside the JavaScript code. It also allows React to show more useful error and warning messages.

With that out of the way, let’s get started!



Embedding Expressions in JSX

In the example below, we declare a variable called name and then use it inside JSX by wrapping it in curly braces:

const name = 'Josh Perez';
const element = <h1>Hello, {name}</h1>;

You can put any valid JavaScript expression inside the curly braces in JSX. For example, 2 + 2, user.firstName, or formatName(user) are all valid JavaScript expressions.

In the example below, we embed the result of calling a JavaScript function, formatName(user), into an <h1> element.

function formatName(user) {
  return user.firstName + ' ' + user.lastName;
}

const user = {
  firstName: 'Harper',
  lastName: 'Perez'
};

const element = (
  <h1>
    Hello, {formatName(user)}!
  </h1>
);

Try it on CodePen

We split JSX over multiple lines for readability. While it isn’t required, when doing this, we also recommend wrapping it in parentheses to avoid the pitfalls of automatic semicolon insertion.



JSX is an Expression Too

After compilation, JSX expressions become regular JavaScript function calls and evaluate to JavaScript objects.

This means that you can use JSX inside of if statements and for loops, assign it to variables, accept it as arguments, and return it from functions:

function getGreeting(user) {
  if (user) {
    return <h1>Hello, {formatName(user)}!</h1>;
  }
  return <h1>Hello, Stranger.</h1>;
}



Specifying Attributes with JSX

You may use quotes to specify string literals as attributes:

const element = <a href="https://www.reactjs.org"> link </a>;


You may also use curly braces to embed a JavaScript expression in an attribute:

const element = <img src={user.avatarUrl}></img>;


Don’t put quotes around curly braces when embedding a JavaScript expression in an attribute. You should either use quotes (for string values) or curly braces (for expressions), but not both in the same attribute.


Warning:

Since JSX is closer to JavaScript than to HTML, React DOM uses camelCase property naming convention instead of HTML attribute names.

For example, class becomes className in JSX, and tabindex becomes tabIndex.





Specifying Children with JSX

If a tag is empty, you may close it immediately with />, like XML:

const element = <img src={user.avatarUrl} />;


JSX tags may contain children:

const element = (
  <div>
    <h1>Hello!</h1>
    <h2>Good to see you here.</h2>
  </div>
);




JSX Prevents Injection Attacks

It is safe to embed user input in JSX:

const title = response.potentiallyMaliciousInput;
// This is safe:
const element = <h1>{title}</h1>;


By default, React DOM escapes any values embedded in JSX before rendering them. Thus it ensures that you can never inject anything that’s not explicitly written in your application. Everything is converted to a string before being rendered. This helps prevent XSS (cross-site-scripting) attacks.



JSX Represents Objects

Babel compiles JSX down to React.createElement() calls.

These two examples are identical:

const element = (
  <h1 className="greeting">
    Hello, world!
  </h1>
);


const element = React.createElement(
  'h1',
  {className: 'greeting'},
  'Hello, world!'
);


React.createElement() performs a few checks to help you write bug-free code but essentially it creates an object like this:

// Note: this structure is simplified
const element = {
  type: 'h1',
  props: {
    className: 'greeting',
    children: 'Hello, world!'
  }
};


These objects are called “React elements”. You can think of them as descriptions of what you want to see on the screen. React reads these objects and uses them to construct the DOM and keep it up to date.

We will explore rendering React elements to the DOM in the next section.


Tip:

We recommend using the “Babel” language definition for your editor of choice so that both ES6 and JSX code is properly highlighted.






Rendering Elements

Elements are the smallest building blocks of React apps.

An element describes what you want to see on the screen:

const element = <h1>Hello, world</h1>;


Unlike browser DOM elements, React elements are plain objects, and are cheap to create. React DOM takes care of updating the DOM to match the React elements.


Note:

One might confuse elements with a more widely known concept of “components”. We will introduce components in the next section. Elements are what components are “made of”, and we encourage you to read this section before jumping ahead.




Rendering an Element into the DOM

Let’s say there is a <div> somewhere in your HTML file:

<div id="root"></div>


We call this a “root” DOM node because everything inside it will be managed by React DOM.

Applications built with just React usually have a single root DOM node. If you are integrating React into an existing app, you may have as many isolated root DOM nodes as you like.

To render a React element, first pass the DOM element to ReactDOM.createRoot(), then pass the React element to root.render():

embed:rendering-elements/render-an-element.js

Try it on CodePen

It displays “Hello, world” on the page.



Updating the Rendered Element

React elements are immutable. Once you create an element, you can’t change its children or attributes. An element is like a single frame in a movie: it represents the UI at a certain point in time.

With our knowledge so far, the only way to update the UI is to create a new element, and pass it to root.render().

Consider this ticking clock example:

embed:rendering-elements/update-rendered-element.js

Try it on CodePen

It calls root.render() every second from a setInterval() callback.


Note:

In practice, most React apps only call root.render() once. In the next sections we will learn how such code gets encapsulated into stateful components.

We recommend that you don’t skip topics because they build on each other.





React Only Updates What’s Necessary

React DOM compares the element and its children to the previous one, and only applies the DOM updates necessary to bring the DOM to the desired state.

You can verify by inspecting the last example with the browser tools:


[image: DOM inspector showing granular updates]
DOM inspector showing granular updates

Even though we create an element describing the whole UI tree on every tick, only the text node whose contents have changed gets updated by React DOM.

In our experience, thinking about how the UI should look at any given moment, rather than how to change it over time, eliminates a whole class of bugs.




Components and Props

Components let you split the UI into independent, reusable pieces, and think about each piece in isolation. This page provides an introduction to the idea of components. You can find a detailed component API reference here.

Conceptually, components are like JavaScript functions. They accept arbitrary inputs (called “props”) and return React elements describing what should appear on the screen.


Function and Class Components

The simplest way to define a component is to write a JavaScript function:

function Welcome(props) {
  return <h1>Hello, {props.name}</h1>;
}


This function is a valid React component because it accepts a single “props” (which stands for properties) object argument with data and returns a React element. We call such components “function components” because they are literally JavaScript functions.

You can also use an ES6 class to define a component:

class Welcome extends React.Component {
  render() {
    return <h1>Hello, {this.props.name}</h1>;
  }
}


The above two components are equivalent from React’s point of view.

Function and Class components both have some additional features that we will discuss in the next sections.



Rendering a Component

Previously, we only encountered React elements that represent DOM tags:

const element = <div />;


However, elements can also represent user-defined components:

const element = <Welcome name="Sara" />;


When React sees an element representing a user-defined component, it passes JSX attributes and children to this component as a single object. We call this object “props”.

For example, this code renders “Hello, Sara” on the page:

function Welcome(props) {
  return <h1>Hello, {props.name}</h1>;
}

const root = ReactDOM.createRoot(document.getElementById('root'));
const element = <Welcome name="Sara" />;
root.render(element);

Try it on CodePen

Let’s recap what happens in this example:


	We call root.render() with the <Welcome name="Sara" /> element.

	React calls the Welcome component with {name: 'Sara'} as the props.

	Our Welcome component returns a <h1>Hello, Sara</h1> element as the result.

	React DOM efficiently updates the DOM to match <h1>Hello, Sara</h1>.




Note: Always start component names with a capital letter.

React treats components starting with lowercase letters as DOM tags. For example, <div /> represents an HTML div tag, but <Welcome /> represents a component and requires Welcome to be in scope.

To learn more about the reasoning behind this convention, please read JSX In Depth.





Composing Components

Components can refer to other components in their output. This lets us use the same component abstraction for any level of detail. A button, a form, a dialog, a screen: in React apps, all those are commonly expressed as components.

For example, we can create an App component that renders Welcome many times:

function Welcome(props) {
  return <h1>Hello, {props.name}</h1>;
}

function App() {
  return (
    <div>
      <Welcome name="Sara" />
      <Welcome name="Cahal" />
      <Welcome name="Edite" />
    </div>
  );
}

Try it on CodePen

Typically, new React apps have a single App component at the very top. However, if you integrate React into an existing app, you might start bottom-up with a small component like Button and gradually work your way to the top of the view hierarchy.



Extracting Components

Don’t be afraid to split components into smaller components.

For example, consider this Comment component:

function Comment(props) {
  return (
    <div className="Comment">
      <div className="UserInfo">
        <img className="Avatar"
          src={props.author.avatarUrl}
          alt={props.author.name}
        />
        <div className="UserInfo-name">
          {props.author.name}
        </div>
      </div>
      <div className="Comment-text">
        {props.text}
      </div>
      <div className="Comment-date">
        {formatDate(props.date)}
      </div>
    </div>
  );
}


Try it on CodePen

It accepts author (an object), text (a string), and date (a date) as props, and describes a comment on a social media website.

This component can be tricky to change because of all the nesting, and it is also hard to reuse individual parts of it. Let’s extract a few components from it.

First, we will extract Avatar:

function Avatar(props) {
  return (
    <img className="Avatar"
      src={props.user.avatarUrl}
      alt={props.user.name}
    />
  );
}

The Avatar doesn’t need to know that it is being rendered inside a Comment. This is why we have given its prop a more generic name: user rather than author.

We recommend naming props from the component’s own point of view rather than the context in which it is being used.

We can now simplify Comment a tiny bit:

function Comment(props) {
  return (
    <div className="Comment">
      <div className="UserInfo">
        <Avatar user={props.author} />
        <div className="UserInfo-name">
          {props.author.name}
        </div>
      </div>
      <div className="Comment-text">
        {props.text}
      </div>
      <div className="Comment-date">
        {formatDate(props.date)}
      </div>
    </div>
  );
}

Next, we will extract a UserInfo component that renders an Avatar next to the user’s name:

function UserInfo(props) {
  return (
    <div className="UserInfo">
      <Avatar user={props.user} />
      <div className="UserInfo-name">
        {props.user.name}
      </div>
    </div>
  );
}

This lets us simplify Comment even further:

function Comment(props) {
  return (
    <div className="Comment">
      <UserInfo user={props.author} />
      <div className="Comment-text">
        {props.text}
      </div>
      <div className="Comment-date">
        {formatDate(props.date)}
      </div>
    </div>
  );
}

Try it on CodePen

Extracting components might seem like grunt work at first, but having a palette of reusable components pays off in larger apps. A good rule of thumb is that if a part of your UI is used several times (Button, Panel, Avatar), or is complex enough on its own (App, FeedStory, Comment), it is a good candidate to be extracted to a separate component.



Props are Read-Only

Whether you declare a component as a function or a class, it must never modify its own props. Consider this sum function:

function sum(a, b) {
  return a + b;
}


Such functions are called “pure” because they do not attempt to change their inputs, and always return the same result for the same inputs.

In contrast, this function is impure because it changes its own input:

function withdraw(account, amount) {
  account.total -= amount;
}


React is pretty flexible but it has a single strict rule:

All React components must act like pure functions with respect to their props.

Of course, application UIs are dynamic and change over time. In the next section, we will introduce a new concept of “state”. State allows React components to change their output over time in response to user actions, network responses, and anything else, without violating this rule.




State and Lifecycle

This page introduces the concept of state and lifecycle in a React component. You can find a detailed component API reference here.

Consider the ticking clock example from one of the previous sections. In Rendering Elements, we have only learned one way to update the UI. We call root.render() to change the rendered output:

const root = ReactDOM.createRoot(document.getElementById('root'));
  
function tick() {
  const element = (
    <div>
      <h1>Hello, world!</h1>
      <h2>It is {new Date().toLocaleTimeString()}.</h2>
    </div>
  );
  root.render(element);
}

setInterval(tick, 1000);

Try it on CodePen

In this section, we will learn how to make the Clock component truly reusable and encapsulated. It will set up its own timer and update itself every second.

We can start by encapsulating how the clock looks:

const root = ReactDOM.createRoot(document.getElementById('root'));

function Clock(props) {
  return (
    <div>
      <h1>Hello, world!</h1>
      <h2>It is {props.date.toLocaleTimeString()}.</h2>
    </div>
  );
}

function tick() {
  root.render(<Clock date={new Date()} />);
}

setInterval(tick, 1000);

Try it on CodePen

However, it misses a crucial requirement: the fact that the Clock sets up a timer and updates the UI every second should be an implementation detail of the Clock.

Ideally we want to write this once and have the Clock update itself:

root.render(<Clock />);

To implement this, we need to add “state” to the Clock component.

State is similar to props, but it is private and fully controlled by the component.


Converting a Function to a Class

You can convert a function component like Clock to a class in five steps:


	Create an ES6 class, with the same name, that extends React.Component.


	Add a single empty method to it called render().


	Move the body of the function into the render() method.


	Replace props with this.props in the render() body.


	Delete the remaining empty function declaration.




class Clock extends React.Component {
  render() {
    return (
      <div>
        <h1>Hello, world!</h1>
        <h2>It is {this.props.date.toLocaleTimeString()}.</h2>
      </div>
    );
  }
}


Try it on CodePen

Clock is now defined as a class rather than a function.

The render method will be called each time an update happens, but as long as we render <Clock /> into the same DOM node, only a single instance of the Clock class will be used. This lets us use additional features such as local state and lifecycle methods.



Adding Local State to a Class

We will move the date from props to state in three steps:


	Replace this.props.date with this.state.date in the render() method:



class Clock extends React.Component {
  render() {
    return (
      <div>
        <h1>Hello, world!</h1>
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
      </div>
    );
  }
}


	Add a class constructor that assigns the initial this.state:



class Clock extends React.Component {
  constructor(props) {
    super(props);
    this.state = {date: new Date()};
  }

  render() {
    return (
      <div>
        <h1>Hello, world!</h1>
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
      </div>
    );
  }
}

Note how we pass props to the base constructor:

  constructor(props) {
    super(props);
    this.state = {date: new Date()};
  }

Class components should always call the base constructor with props.


	Remove the date prop from the <Clock /> element:



root.render(<Clock />);

We will later add the timer code back to the component itself.

The result looks like this:

class Clock extends React.Component {
  constructor(props) {
    super(props);
    this.state = {date: new Date()};
  }

  render() {
    return (
      <div>
        <h1>Hello, world!</h1>
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
      </div>
    );
  }
}

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Clock />);

Try it on CodePen

Next, we’ll make the Clock set up its own timer and update itself every second.



Adding Lifecycle Methods to a Class

In applications with many components, it’s very important to free up resources taken by the components when they are destroyed.

We want to set up a timer whenever the Clock is rendered to the DOM for the first time. This is called “mounting” in React.

We also want to clear that timer whenever the DOM produced by the Clock is removed. This is called “unmounting” in React.

We can declare special methods on the component class to run some code when a component mounts and unmounts:

class Clock extends React.Component {
  constructor(props) {
    super(props);
    this.state = {date: new Date()};
  }

  componentDidMount() {

  }

  componentWillUnmount() {

  }

  render() {
    return (
      <div>
        <h1>Hello, world!</h1>
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
      </div>
    );
  }
}

These methods are called “lifecycle methods”.

The componentDidMount() method runs after the component output has been rendered to the DOM. This is a good place to set up a timer:

  componentDidMount() {
    this.timerID = setInterval(
      () => this.tick(),
      1000
    );
  }

Note how we save the timer ID right on this (this.timerID).

While this.props is set up by React itself and this.state has a special meaning, you are free to add additional fields to the class manually if you need to store something that doesn’t participate in the data flow (like a timer ID).

We will tear down the timer in the componentWillUnmount() lifecycle method:

  componentWillUnmount() {
    clearInterval(this.timerID);
  }

Finally, we will implement a method called tick() that the Clock component will run every second.

It will use this.setState() to schedule updates to the component local state:

class Clock extends React.Component {
  constructor(props) {
    super(props);
    this.state = {date: new Date()};
  }

  componentDidMount() {
    this.timerID = setInterval(
      () => this.tick(),
      1000
    );
  }

  componentWillUnmount() {
    clearInterval(this.timerID);
  }

  tick() {
    this.setState({
      date: new Date()
    });
  }

  render() {
    return (
      <div>
        <h1>Hello, world!</h1>
        <h2>It is {this.state.date.toLocaleTimeString()}.</h2>
      </div>
    );
  }
}

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Clock />);

Try it on CodePen

Now the clock ticks every second.

Let’s quickly recap what’s going on and the order in which the methods are called:


	When <Clock /> is passed to root.render(), React calls the constructor of the Clock component. Since Clock needs to display the current time, it initializes this.state with an object including the current time. We will later update this state.


	React then calls the Clock component’s render() method. This is how React learns what should be displayed on the screen. React then updates the DOM to match the Clock’s render output.


	When the Clock output is inserted in the DOM, React calls the componentDidMount() lifecycle method. Inside it, the Clock component asks the browser to set up a timer to call the component’s tick() method once a second.


	Every second the browser calls the tick() method. Inside it, the Clock component schedules a UI update by calling setState() with an object containing the current time. Thanks to the setState() call, React knows the state has changed, and calls the render() method again to learn what should be on the screen. This time, this.state.date in the render() method will be different, and so the render output will include the updated time. React updates the DOM accordingly.


	If the Clock component is ever removed from the DOM, React calls the componentWillUnmount() lifecycle method so the timer is stopped.






Using State Correctly

There are three things you should know about setState().


Do Not Modify State Directly

For example, this will not re-render a component:

// Wrong
this.state.comment = 'Hello';


Instead, use setState():

// Correct
this.setState({comment: 'Hello'});


The only place where you can assign this.state is the constructor.



State Updates May Be Asynchronous

React may batch multiple setState() calls into a single update for performance.

Because this.props and this.state may be updated asynchronously, you should not rely on their values for calculating the next state.

For example, this code may fail to update the counter:

// Wrong
this.setState({
  counter: this.state.counter + this.props.increment,
});


To fix it, use a second form of setState() that accepts a function rather than an object. That function will receive the previous state as the first argument, and the props at the time the update is applied as the second argument:

// Correct
this.setState((state, props) => ({
  counter: state.counter + props.increment
}));


We used an arrow function above, but it also works with regular functions:

// Correct
this.setState(function(state, props) {
  return {
    counter: state.counter + props.increment
  };
});




State Updates are Merged

When you call setState(), React merges the object you provide into the current state.

For example, your state may contain several independent variables:

  constructor(props) {
    super(props);
    this.state = {
      posts: [],
      comments: []
    };
  }

Then you can update them independently with separate setState() calls:

  componentDidMount() {
    fetchPosts().then(response => {
      this.setState({
        posts: response.posts
      });
    });

    fetchComments().then(response => {
      this.setState({
        comments: response.comments
      });
    });
  }

The merging is shallow, so this.setState({comments}) leaves this.state.posts intact, but completely replaces this.state.comments.




The Data Flows Down

Neither parent nor child components can know if a certain component is stateful or stateless, and they shouldn’t care whether it is defined as a function or a class.

This is why state is often called local or encapsulated. It is not accessible to any component other than the one that owns and sets it.

A component may choose to pass its state down as props to its child components:

<FormattedDate date={this.state.date} />


The FormattedDate component would receive the date in its props and wouldn’t know whether it came from the Clock’s state, from the Clock’s props, or was typed by hand:

function FormattedDate(props) {
  return <h2>It is {props.date.toLocaleTimeString()}.</h2>;
}


Try it on CodePen

This is commonly called a “top-down” or “unidirectional” data flow. Any state is always owned by some specific component, and any data or UI derived from that state can only affect components “below” them in the tree.

If you imagine a component tree as a waterfall of props, each component’s state is like an additional water source that joins it at an arbitrary point but also flows down.

To show that all components are truly isolated, we can create an App component that renders three <Clock>s:

function App() {
  return (
    <div>
      <Clock />
      <Clock />
      <Clock />
    </div>
  );
}

Try it on CodePen

Each Clock sets up its own timer and updates independently.

In React apps, whether a component is stateful or stateless is considered an implementation detail of the component that may change over time. You can use stateless components inside stateful components, and vice versa.




Handling Events

Handling events with React elements is very similar to handling events on DOM elements. There are some syntax differences:


	React events are named using camelCase, rather than lowercase.

	With JSX you pass a function as the event handler, rather than a string.



For example, the HTML:

<button onclick="activateLasers()">
  Activate Lasers
</button>


is slightly different in React:

<button onClick={activateLasers}>
  Activate Lasers
</button>

Another difference is that you cannot return false to prevent default behavior in React. You must call preventDefault explicitly. For example, with plain HTML, to prevent the default form behavior of submitting, you can write:

<form onsubmit="console.log('You clicked submit.'); return false">
  <button type="submit">Submit</button>
</form>


In React, this could instead be:

function Form() {
  function handleSubmit(e) {
    e.preventDefault();
    console.log('You clicked submit.');
  }

  return (
    <form onSubmit={handleSubmit}>
      <button type="submit">Submit</button>
    </form>
  );
}

Here, e is a synthetic event. React defines these synthetic events according to the W3C spec, so you don’t need to worry about cross-browser compatibility. React events do not work exactly the same as native events. See the SyntheticEvent reference guide to learn more.

When using React, you generally don’t need to call addEventListener to add listeners to a DOM element after it is created. Instead, just provide a listener when the element is initially rendered.

When you define a component using an ES6 class, a common pattern is for an event handler to be a method on the class. For example, this Toggle component renders a button that lets the user toggle between “ON” and “OFF” states:

class Toggle extends React.Component {
  constructor(props) {
    super(props);
    this.state = {isToggleOn: true};

    // This binding is necessary to make `this` work in the callback
    this.handleClick = this.handleClick.bind(this);
  }

  handleClick() {
    this.setState(prevState => ({
      isToggleOn: !prevState.isToggleOn
    }));
  }

  render() {
    return (
      <button onClick={this.handleClick}>
        {this.state.isToggleOn ? 'ON' : 'OFF'}
      </button>
    );
  }
}

Try it on CodePen

You have to be careful about the meaning of this in JSX callbacks. In JavaScript, class methods are not bound by default. If you forget to bind this.handleClick and pass it to onClick, this will be undefined when the function is actually called.

This is not React-specific behavior; it is a part of how functions work in JavaScript. Generally, if you refer to a method without () after it, such as onClick={this.handleClick}, you should bind that method.

If calling bind annoys you, there are two ways you can get around this. You can use public class fields syntax to correctly bind callbacks:

class LoggingButton extends React.Component {
  // This syntax ensures `this` is bound within handleClick.
  handleClick = () => {
    console.log('this is:', this);
  };

  render() {
    return (
      <button onClick={this.handleClick}>
        Click me
      </button>
    );
  }
}

This syntax is enabled by default in Create React App.

If you aren’t using class fields syntax, you can use an arrow function in the callback:

class LoggingButton extends React.Component {
  handleClick() {
    console.log('this is:', this);
  }

  render() {
    // This syntax ensures `this` is bound within handleClick
    return (
      <button onClick={() => this.handleClick()}>
        Click me
      </button>
    );
  }
}

The problem with this syntax is that a different callback is created each time the LoggingButton renders. In most cases, this is fine. However, if this callback is passed as a prop to lower components, those components might do an extra re-rendering. We generally recommend binding in the constructor or using the class fields syntax, to avoid this sort of performance problem.


Passing Arguments to Event Handlers

Inside a loop, it is common to want to pass an extra parameter to an event handler. For example, if id is the row ID, either of the following would work:

<button onClick={(e) => this.deleteRow(id, e)}>Delete Row</button>
<button onClick={this.deleteRow.bind(this, id)}>Delete Row</button>


The above two lines are equivalent, and use arrow functions and Function.prototype.bind respectively.

In both cases, the e argument representing the React event will be passed as a second argument after the ID. With an arrow function, we have to pass it explicitly, but with bind any further arguments are automatically forwarded.




Conditional Rendering

In React, you can create distinct components that encapsulate behavior you need. Then, you can render only some of them, depending on the state of your application.

Conditional rendering in React works the same way conditions work in JavaScript. Use JavaScript operators like if or the conditional operator to create elements representing the current state, and let React update the UI to match them.

Consider these two components:

function UserGreeting(props) {
  return <h1>Welcome back!</h1>;
}

function GuestGreeting(props) {
  return <h1>Please sign up.</h1>;
}


We’ll create a Greeting component that displays either of these components depending on whether a user is logged in:

function Greeting(props) {
  const isLoggedIn = props.isLoggedIn;
  if (isLoggedIn) {
    return <UserGreeting />;
  }
  return <GuestGreeting />;
}

const root = ReactDOM.createRoot(document.getElementById('root')); 
// Try changing to isLoggedIn={true}:
root.render(<Greeting isLoggedIn={false} />);

Try it on CodePen

This example renders a different greeting depending on the value of isLoggedIn prop.


Element Variables

You can use variables to store elements. This can help you conditionally render a part of the component while the rest of the output doesn’t change.

Consider these two new components representing Logout and Login buttons:

function LoginButton(props) {
  return (
    <button onClick={props.onClick}>
      Login
    </button>
  );
}

function LogoutButton(props) {
  return (
    <button onClick={props.onClick}>
      Logout
    </button>
  );
}


In the example below, we will create a stateful component called LoginControl.

It will render either <LoginButton /> or <LogoutButton /> depending on its current state. It will also render a <Greeting /> from the previous example:

class LoginControl extends React.Component {
  constructor(props) {
    super(props);
    this.handleLoginClick = this.handleLoginClick.bind(this);
    this.handleLogoutClick = this.handleLogoutClick.bind(this);
    this.state = {isLoggedIn: false};
  }

  handleLoginClick() {
    this.setState({isLoggedIn: true});
  }

  handleLogoutClick() {
    this.setState({isLoggedIn: false});
  }

  render() {
    const isLoggedIn = this.state.isLoggedIn;
    let button;

    if (isLoggedIn) {
      button = <LogoutButton onClick={this.handleLogoutClick} />;
    } else {
      button = <LoginButton onClick={this.handleLoginClick} />;
    }

    return (
      <div>
        <Greeting isLoggedIn={isLoggedIn} />
        {button}
      </div>
    );
  }
}

const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<LoginControl />);

Try it on CodePen

While declaring a variable and using an if statement is a fine way to conditionally render a component, sometimes you might want to use a shorter syntax. There are a few ways to inline conditions in JSX, explained below.



Inline If with Logical && Operator

You may embed expressions in JSX by wrapping them in curly braces. This includes the JavaScript logical && operator. It can be handy for conditionally including an element:

function Mailbox(props) {
  const unreadMessages = props.unreadMessages;
  return (
    <div>
      <h1>Hello!</h1>
      {unreadMessages.length > 0 &&
        <h2>
          You have {unreadMessages.length} unread messages.
        </h2>
      }
    </div>
  );
}

const messages = ['React', 'Re: React', 'Re:Re: React'];

const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Mailbox unreadMessages={messages} />);

Try it on CodePen

It works because in JavaScript, true && expression always evaluates to expression, and false && expression always evaluates to false.

Therefore, if the condition is true, the element right after && will appear in the output. If it is false, React will ignore and skip it.

Note that returning a falsy expression will still cause the element after && to be skipped but will return the falsy expression. In the example below, <div>0</div> will be returned by the render method.

render() {
  const count = 0;
  return (
    <div>
      {count && <h1>Messages: {count}</h1>}
    </div>
  );
}



Inline If-Else with Conditional Operator

Another method for conditionally rendering elements inline is to use the JavaScript conditional operator condition ? true : false.

In the example below, we use it to conditionally render a small block of text.

render() {
  const isLoggedIn = this.state.isLoggedIn;
  return (
    <div>
      The user is <b>{isLoggedIn ? 'currently' : 'not'}</b> logged in.
    </div>
  );
}

It can also be used for larger expressions although it is less obvious what’s going on:

render() {
  const isLoggedIn = this.state.isLoggedIn;
  return (
    <div>
      {isLoggedIn
        ? <LogoutButton onClick={this.handleLogoutClick} />
        : <LoginButton onClick={this.handleLoginClick} />
      }
    </div>
  );
}

Just like in JavaScript, it is up to you to choose an appropriate style based on what you and your team consider more readable. Also remember that whenever conditions become too complex, it might be a good time to extract a component.



Preventing Component from Rendering

In rare cases you might want a component to hide itself even though it was rendered by another component. To do this return null instead of its render output.

In the example below, the <WarningBanner /> is rendered depending on the value of the prop called warn. If the value of the prop is false, then the component does not render:

function WarningBanner(props) {
  if (!props.warn) {
    return null;
  }

  return (
    <div className="warning">
      Warning!
    </div>
  );
}

class Page extends React.Component {
  constructor(props) {
    super(props);
    this.state = {showWarning: true};
    this.handleToggleClick = this.handleToggleClick.bind(this);
  }

  handleToggleClick() {
    this.setState(state => ({
      showWarning: !state.showWarning
    }));
  }

  render() {
    return (
      <div>
        <WarningBanner warn={this.state.showWarning} />
        <button onClick={this.handleToggleClick}>
          {this.state.showWarning ? 'Hide' : 'Show'}
        </button>
      </div>
    );
  }
}

const root = ReactDOM.createRoot(document.getElementById('root')); 
root.render(<Page />);

Try it on CodePen

Returning null from a component’s render method does not affect the firing of the component’s lifecycle methods. For instance componentDidUpdate will still be called.




Lists and Keys

First, let’s review how you transform lists in JavaScript.

Given the code below, we use the map() function to take an array of numbers and double their values. We assign the new array returned by map() to the variable doubled and log it:

const numbers = [1, 2, 3, 4, 5];
const doubled = numbers.map((number) => number * 2);
console.log(doubled);

This code logs [2, 4, 6, 8, 10] to the console.

In React, transforming arrays into lists of elements is nearly identical.


Rendering Multiple Components

You can build collections of elements and include them in JSX using curly braces {}.

Below, we loop through the numbers array using the JavaScript map() function. We return a <li> element for each item. Finally, we assign the resulting array of elements to listItems:

const numbers = [1, 2, 3, 4, 5];
const listItems = numbers.map((number) =>
  <li>{number}</li>
);

Then, we can include the entire listItems array inside a <ul> element:

<ul>{listItems}</ul>

Try it on CodePen

This code displays a bullet list of numbers between 1 and 5.



Basic List Component

Usually you would render lists inside a component.

We can refactor the previous example into a component that accepts an array of numbers and outputs a list of elements.

function NumberList(props) {
  const numbers = props.numbers;
  const listItems = numbers.map((number) =>
    <li>{number}</li>
  );
  return (
    <ul>{listItems}</ul>
  );
}

const numbers = [1, 2, 3, 4, 5];
const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<NumberList numbers={numbers} />);

When you run this code, you’ll be given a warning that a key should be provided for list items. A “key” is a special string attribute you need to include when creating lists of elements. We’ll discuss why it’s important in the next section.

Let’s assign a key to our list items inside numbers.map() and fix the missing key issue.

function NumberList(props) {
  const numbers = props.numbers;
  const listItems = numbers.map((number) =>
    <li key={number.toString()}>
      {number}
    </li>
  );
  return (
    <ul>{listItems}</ul>
  );
}

Try it on CodePen



Keys

Keys help React identify which items have changed, are added, or are removed. Keys should be given to the elements inside the array to give the elements a stable identity:

const numbers = [1, 2, 3, 4, 5];
const listItems = numbers.map((number) =>
  <li key={number.toString()}>
    {number}
  </li>
);

The best way to pick a key is to use a string that uniquely identifies a list item among its siblings. Most often you would use IDs from your data as keys:

const todoItems = todos.map((todo) =>
  <li key={todo.id}>
    {todo.text}
  </li>
);

When you don’t have stable IDs for rendered items, you may use the item index as a key as a last resort:

const todoItems = todos.map((todo, index) =>
  // Only do this if items have no stable IDs
  <li key={index}>
    {todo.text}
  </li>
);

We don’t recommend using indexes for keys if the order of items may change. This can negatively impact performance and may cause issues with component state. Check out Robin Pokorny’s article for an in-depth explanation on the negative impacts of using an index as a key. If you choose not to assign an explicit key to list items then React will default to using indexes as keys.

Here is an in-depth explanation about why keys are necessary if you’re interested in learning more.


Extracting Components with Keys

Keys only make sense in the context of the surrounding array.

For example, if you extract a ListItem component, you should keep the key on the <ListItem /> elements in the array rather than on the <li> element in the ListItem itself.

Example: Incorrect Key Usage

function ListItem(props) {
  const value = props.value;
  return (
    // Wrong! There is no need to specify the key here:
    <li key={value.toString()}>
      {value}
    </li>
  );
}

function NumberList(props) {
  const numbers = props.numbers;
  const listItems = numbers.map((number) =>
    // Wrong! The key should have been specified here:
    <ListItem value={number} />
  );
  return (
    <ul>
      {listItems}
    </ul>
  );
}

Example: Correct Key Usage

function ListItem(props) {
  // Correct! There is no need to specify the key here:
  return <li>{props.value}</li>;
}

function NumberList(props) {
  const numbers = props.numbers;
  const listItems = numbers.map((number) =>
    // Correct! Key should be specified inside the array.
    <ListItem key={number.toString()} value={number} />
  );
  return (
    <ul>
      {listItems}
    </ul>
  );
}

Try it on CodePen

A good rule of thumb is that elements inside the map() call need keys.



Keys Must Only Be Unique Among Siblings

Keys used within arrays should be unique among their siblings. However, they don’t need to be globally unique. We can use the same keys when we produce two different arrays:

function Blog(props) {
  const sidebar = (
    <ul>
      {props.posts.map((post) =>
        <li key={post.id}>
          {post.title}
        </li>
      )}
    </ul>
  );
  const content = props.posts.map((post) =>
    <div key={post.id}>
      <h3>{post.title}</h3>
      <p>{post.content}</p>
    </div>
  );
  return (
    <div>
      {sidebar}
      <hr />
      {content}
    </div>
  );
}

const posts = [
  {id: 1, title: 'Hello World', content: 'Welcome to learning React!'},
  {id: 2, title: 'Installation', content: 'You can install React from npm.'}
];

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(<Blog posts={posts} />);

Try it on CodePen

Keys serve as a hint to React but they don’t get passed to your components. If you need the same value in your component, pass it explicitly as a prop with a different name:

const content = posts.map((post) =>
  <Post
    key={post.id}
    id={post.id}
    title={post.title} />
);

With the example above, the Post component can read props.id, but not props.key.



Embedding map() in JSX

In the examples above we declared a separate listItems variable and included it in JSX:

function NumberList(props) {
  const numbers = props.numbers;
  const listItems = numbers.map((number) =>
    <ListItem key={number.toString()}
              value={number} />
  );
  return (
    <ul>
      {listItems}
    </ul>
  );
}

JSX allows embedding any expression in curly braces so we could inline the map() result:

function NumberList(props) {
  const numbers = props.numbers;
  return (
    <ul>
      {numbers.map((number) =>
        <ListItem key={number.toString()}
                  value={number} />
      )}
    </ul>
  );
}

Try it on CodePen

Sometimes this results in clearer code, but this style can also be abused. Like in JavaScript, it is up to you to decide whether it is worth extracting a variable for readability. Keep in mind that if the map() body is too nested, it might be a good time to extract a component.





Forms

HTML form elements work a bit differently from other DOM elements in React, because form elements naturally keep some internal state. For example, this form in plain HTML accepts a single name:

<form>
  <label>
    Name:
    <input type="text" name="name" />
  </label>
  <input type="submit" value="Submit" />
</form>


This form has the default HTML form behavior of browsing to a new page when the user submits the form. If you want this behavior in React, it just works. But in most cases, it’s convenient to have a JavaScript function that handles the submission of the form and has access to the data that the user entered into the form. The standard way to achieve this is with a technique called “controlled components”.


Controlled Components

In HTML, form elements such as <input>, <textarea>, and <select> typically maintain their own state and update it based on user input. In React, mutable state is typically kept in the state property of components, and only updated with setState().

We can combine the two by making the React state be the “single source of truth”. Then the React component that renders a form also controls what happens in that form on subsequent user input. An input form element whose value is controlled by React in this way is called a “controlled component”.

For example, if we want to make the previous example log the name when it is submitted, we can write the form as a controlled component:

class NameForm extends React.Component {
  constructor(props) {
    super(props);
    this.state = {value: ''};

    this.handleChange = this.handleChange.bind(this);
    this.handleSubmit = this.handleSubmit.bind(this);
  }

  handleChange(event) {
    this.setState({value: event.target.value});
  }

  handleSubmit(event) {
    alert('A name was submitted: ' + this.state.value);
    event.preventDefault();
  }

  render() {
    return (
      <form onSubmit={this.handleSubmit}>
        <label>
          Name:
          <input type="text" value={this.state.value} onChange={this.handleChange} />
        </label>
        <input type="submit" value="Submit" />
      </form>
    );
  }
}

Try it on CodePen

Since the value attribute is set on our form element, the displayed value will always be this.state.value, making the React state the source of truth. Since handleChange runs on every keystroke to update the React state, the displayed value will update as the user types.

With a controlled component, the input’s value is always driven by the React state. While this means you have to type a bit more code, you can now pass the value to other UI elements too, or reset it from other event handlers.



The textarea Tag

In HTML, a <textarea> element defines its text by its children:

<textarea>
  Hello there, this is some text in a text area
</textarea>


In React, a <textarea> uses a value attribute instead. This way, a form using a <textarea> can be written very similarly to a form that uses a single-line input:

class EssayForm extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      value: 'Please write an essay about your favorite DOM element.'
    };

    this.handleChange = this.handleChange.bind(this);
    this.handleSubmit = this.handleSubmit.bind(this);
  }

  handleChange(event) {
    this.setState({value: event.target.value});
  }

  handleSubmit(event) {
    alert('An essay was submitted: ' + this.state.value);
    event.preventDefault();
  }

  render() {
    return (
      <form onSubmit={this.handleSubmit}>
        <label>
          Essay:
          <textarea value={this.state.value} onChange={this.handleChange} />
        </label>
        <input type="submit" value="Submit" />
      </form>
    );
  }
}

Notice that this.state.value is initialized in the constructor, so that the text area starts off with some text in it.



The select Tag

In HTML, <select> creates a drop-down list. For example, this HTML creates a drop-down list of flavors:

<select>
  <option value="grapefruit">Grapefruit</option>
  <option value="lime">Lime</option>
  <option selected value="coconut">Coconut</option>
  <option value="mango">Mango</option>
</select>


Note that the Coconut option is initially selected, because of the selected attribute. React, instead of using this selected attribute, uses a value attribute on the root select tag. This is more convenient in a controlled component because you only need to update it in one place. For example:

class FlavorForm extends React.Component {
  constructor(props) {
    super(props);
    this.state = {value: 'coconut'};

    this.handleChange = this.handleChange.bind(this);
    this.handleSubmit = this.handleSubmit.bind(this);
  }

  handleChange(event) {
    this.setState({value: event.target.value});
  }

  handleSubmit(event) {
    alert('Your favorite flavor is: ' + this.state.value);
    event.preventDefault();
  }

  render() {
    return (
      <form onSubmit={this.handleSubmit}>
        <label>
          Pick your favorite flavor:
          <select value={this.state.value} onChange={this.handleChange}>
            <option value="grapefruit">Grapefruit</option>
            <option value="lime">Lime</option>
            <option value="coconut">Coconut</option>
            <option value="mango">Mango</option>
          </select>
        </label>
        <input type="submit" value="Submit" />
      </form>
    );
  }
}

Try it on CodePen

Overall, this makes it so that <input type="text">, <textarea>, and <select> all work very similarly - they all accept a value attribute that you can use to implement a controlled component.


Note

You can pass an array into the value attribute, allowing you to select multiple options in a select tag:

<select multiple={true} value={['B', 'C']}>






The file input Tag

In HTML, an <input type="file"> lets the user choose one or more files from their device storage to be uploaded to a server or manipulated by JavaScript via the File API.

<input type="file" />


Because its value is read-only, it is an uncontrolled component in React. It is discussed together with other uncontrolled components later in the documentation.



Handling Multiple Inputs

When you need to handle multiple controlled input elements, you can add a name attribute to each element and let the handler function choose what to do based on the value of event.target.name.

For example:

class Reservation extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      isGoing: true,
      numberOfGuests: 2
    };

    this.handleInputChange = this.handleInputChange.bind(this);
  }

  handleInputChange(event) {
    const target = event.target;
    const value = target.type === 'checkbox' ? target.checked : target.value;
    const name = target.name;

    this.setState({
      [name]: value
    });
  }

  render() {
    return (
      <form>
        <label>
          Is going:
          <input
            name="isGoing"
            type="checkbox"
            checked={this.state.isGoing}
            onChange={this.handleInputChange} />
        </label>
        <br />
        <label>
          Number of guests:
          <input
            name="numberOfGuests"
            type="number"
            value={this.state.numberOfGuests}
            onChange={this.handleInputChange} />
        </label>
      </form>
    );
  }
}

Try it on CodePen

Note how we used the ES6 computed property name syntax to update the state key corresponding to the given input name:

this.setState({
  [name]: value
});

It is equivalent to this ES5 code:

var partialState = {};
partialState[name] = value;
this.setState(partialState);

Also, since setState() automatically merges a partial state into the current state, we only needed to call it with the changed parts.



Controlled Input Null Value

Specifying the value prop on a controlled component prevents the user from changing the input unless you desire so. If you’ve specified a value but the input is still editable, you may have accidentally set value to undefined or null.

The following code demonstrates this. (The input is locked at first but becomes editable after a short delay.)

ReactDOM.createRoot(mountNode).render(<input value="hi" />);

setTimeout(function() {
  ReactDOM.createRoot(mountNode).render(<input value={null} />);
}, 1000);




Alternatives to Controlled Components

It can sometimes be tedious to use controlled components, because you need to write an event handler for every way your data can change and pipe all of the input state through a React component. This can become particularly annoying when you are converting a preexisting codebase to React, or integrating a React application with a non-React library. In these situations, you might want to check out uncontrolled components, an alternative technique for implementing input forms.



Fully-Fledged Solutions

If you’re looking for a complete solution including validation, keeping track of the visited fields, and handling form submission, Formik is one of the popular choices. However, it is built on the same principles of controlled components and managing state — so don’t neglect to learn them.




Lifting State Up

Often, several components need to reflect the same changing data. We recommend lifting the shared state up to their closest common ancestor. Let’s see how this works in action.

In this section, we will create a temperature calculator that calculates whether the water would boil at a given temperature.

We will start with a component called BoilingVerdict. It accepts the celsius temperature as a prop, and prints whether it is enough to boil the water:

function BoilingVerdict(props) {
  if (props.celsius >= 100) {
    return <p>The water would boil.</p>;
  }
  return <p>The water would not boil.</p>;
}

Next, we will create a component called Calculator. It renders an <input> that lets you enter the temperature, and keeps its value in this.state.temperature.

Additionally, it renders the BoilingVerdict for the current input value.

class Calculator extends React.Component {
  constructor(props) {
    super(props);
    this.handleChange = this.handleChange.bind(this);
    this.state = {temperature: ''};
  }

  handleChange(e) {
    this.setState({temperature: e.target.value});
  }

  render() {
    const temperature = this.state.temperature;
    return (
      <fieldset>
        <legend>Enter temperature in Celsius:</legend>
        <input
          value={temperature}
          onChange={this.handleChange} />
        <BoilingVerdict
          celsius={parseFloat(temperature)} />
      </fieldset>
    );
  }
}

Try it on CodePen


Adding a Second Input

Our new requirement is that, in addition to a Celsius input, we provide a Fahrenheit input, and they are kept in sync.

We can start by extracting a TemperatureInput component from Calculator. We will add a new scale prop to it that can either be "c" or "f":

const scaleNames = {
  c: 'Celsius',
  f: 'Fahrenheit'
};

class TemperatureInput extends React.Component {
  constructor(props) {
    super(props);
    this.handleChange = this.handleChange.bind(this);
    this.state = {temperature: ''};
  }

  handleChange(e) {
    this.setState({temperature: e.target.value});
  }

  render() {
    const temperature = this.state.temperature;
    const scale = this.props.scale;
    return (
      <fieldset>
        <legend>Enter temperature in {scaleNames[scale]}:</legend>
        <input value={temperature}
               onChange={this.handleChange} />
      </fieldset>
    );
  }
}

We can now change the Calculator to render two separate temperature inputs:

class Calculator extends React.Component {
  render() {
    return (
      <div>
        <TemperatureInput scale="c" />
        <TemperatureInput scale="f" />
      </div>
    );
  }
}

Try it on CodePen

We have two inputs now, but when you enter the temperature in one of them, the other doesn’t update. This contradicts our requirement: we want to keep them in sync.

We also can’t display the BoilingVerdict from Calculator. The Calculator doesn’t know the current temperature because it is hidden inside the TemperatureInput.



Writing Conversion Functions

First, we will write two functions to convert from Celsius to Fahrenheit and back:

function toCelsius(fahrenheit) {
  return (fahrenheit - 32) * 5 / 9;
}

function toFahrenheit(celsius) {
  return (celsius * 9 / 5) + 32;
}


These two functions convert numbers. We will write another function that takes a string temperature and a converter function as arguments and returns a string. We will use it to calculate the value of one input based on the other input.

It returns an empty string on an invalid temperature, and it keeps the output rounded to the third decimal place:

function tryConvert(temperature, convert) {
  const input = parseFloat(temperature);
  if (Number.isNaN(input)) {
    return '';
  }
  const output = convert(input);
  const rounded = Math.round(output * 1000) / 1000;
  return rounded.toString();
}


For example, tryConvert('abc', toCelsius) returns an empty string, and tryConvert('10.22', toFahrenheit) returns '50.396'.



Lifting State Up

Currently, both TemperatureInput components independently keep their values in the local state:

class TemperatureInput extends React.Component {
  constructor(props) {
    super(props);
    this.handleChange = this.handleChange.bind(this);
    this.state = {temperature: ''};
  }

  handleChange(e) {
    this.setState({temperature: e.target.value});
  }

  render() {
    const temperature = this.state.temperature;
    // ...  

However, we want these two inputs to be in sync with each other. When we update the Celsius input, the Fahrenheit input should reflect the converted temperature, and vice versa.

In React, sharing state is accomplished by moving it up to the closest common ancestor of the components that need it. This is called “lifting state up”. We will remove the local state from the TemperatureInput and move it into the Calculator instead.

If the Calculator owns the shared state, it becomes the “source of truth” for the current temperature in both inputs. It can instruct them both to have values that are consistent with each other. Since the props of both TemperatureInput components are coming from the same parent Calculator component, the two inputs will always be in sync.

Let’s see how this works step by step.

First, we will replace this.state.temperature with this.props.temperature in the TemperatureInput component. For now, let’s pretend this.props.temperature already exists, although we will need to pass it from the Calculator in the future:

  render() {
    // Before: const temperature = this.state.temperature;
    const temperature = this.props.temperature;
    // ...

We know that props are read-only. When the temperature was in the local state, the TemperatureInput could just call this.setState() to change it. However, now that the temperature is coming from the parent as a prop, the TemperatureInput has no control over it.

In React, this is usually solved by making a component “controlled”. Just like the DOM <input> accepts both a value and an onChange prop, so can the custom TemperatureInput accept both temperature and onTemperatureChange props from its parent Calculator.

Now, when the TemperatureInput wants to update its temperature, it calls this.props.onTemperatureChange:

  handleChange(e) {
    // Before: this.setState({temperature: e.target.value});
    this.props.onTemperatureChange(e.target.value);
    // ...


Note:

There is no special meaning to either temperature or onTemperatureChange prop names in custom components. We could have called them anything else, like name them value and onChange which is a common convention.



The onTemperatureChange prop will be provided together with the temperature prop by the parent Calculator component. It will handle the change by modifying its own local state, thus re-rendering both inputs with the new values. We will look at the new Calculator implementation very soon.

Before diving into the changes in the Calculator, let’s recap our changes to the TemperatureInput component. We have removed the local state from it, and instead of reading this.state.temperature, we now read this.props.temperature. Instead of calling this.setState() when we want to make a change, we now call this.props.onTemperatureChange(), which will be provided by the Calculator:

class TemperatureInput extends React.Component {
  constructor(props) {
    super(props);
    this.handleChange = this.handleChange.bind(this);
  }

  handleChange(e) {
    this.props.onTemperatureChange(e.target.value);
  }

  render() {
    const temperature = this.props.temperature;
    const scale = this.props.scale;
    return (
      <fieldset>
        <legend>Enter temperature in {scaleNames[scale]}:</legend>
        <input value={temperature}
               onChange={this.handleChange} />
      </fieldset>
    );
  }
}

Now let’s turn to the Calculator component.

We will store the current input’s temperature and scale in its local state. This is the state we “lifted up” from the inputs, and it will serve as the “source of truth” for both of them. It is the minimal representation of all the data we need to know in order to render both inputs.

For example, if we enter 37 into the Celsius input, the state of the Calculator component will be:

{
  temperature: '37',
  scale: 'c'
}


If we later edit the Fahrenheit field to be 212, the state of the Calculator will be:

{
  temperature: '212',
  scale: 'f'
}


We could have stored the value of both inputs but it turns out to be unnecessary. It is enough to store the value of the most recently changed input, and the scale that it represents. We can then infer the value of the other input based on the current temperature and scale alone.

The inputs stay in sync because their values are computed from the same state:

class Calculator extends React.Component {
  constructor(props) {
    super(props);
    this.handleCelsiusChange = this.handleCelsiusChange.bind(this);
    this.handleFahrenheitChange = this.handleFahrenheitChange.bind(this);
    this.state = {temperature: '', scale: 'c'};
  }

  handleCelsiusChange(temperature) {
    this.setState({scale: 'c', temperature});
  }

  handleFahrenheitChange(temperature) {
    this.setState({scale: 'f', temperature});
  }

  render() {
    const scale = this.state.scale;
    const temperature = this.state.temperature;
    const celsius = scale === 'f' ? tryConvert(temperature, toCelsius) : temperature;
    const fahrenheit = scale === 'c' ? tryConvert(temperature, toFahrenheit) : temperature;

    return (
      <div>
        <TemperatureInput
          scale="c"
          temperature={celsius}
          onTemperatureChange={this.handleCelsiusChange} />
        <TemperatureInput
          scale="f"
          temperature={fahrenheit}
          onTemperatureChange={this.handleFahrenheitChange} />
        <BoilingVerdict
          celsius={parseFloat(celsius)} />
      </div>
    );
  }
}

Try it on CodePen

Now, no matter which input you edit, this.state.temperature and this.state.scale in the Calculator get updated. One of the inputs gets the value as is, so any user input is preserved, and the other input value is always recalculated based on it.

Let’s recap what happens when you edit an input:


	React calls the function specified as onChange on the DOM <input>. In our case, this is the handleChange method in the TemperatureInput component.

	The handleChange method in the TemperatureInput component calls this.props.onTemperatureChange() with the new desired value. Its props, including onTemperatureChange, were provided by its parent component, the Calculator.

	When it previously rendered, the Calculator had specified that onTemperatureChange of the Celsius TemperatureInput is the Calculator’s handleCelsiusChange method, and onTemperatureChange of the Fahrenheit TemperatureInput is the Calculator’s handleFahrenheitChange method. So either of these two Calculator methods gets called depending on which input we edited.

	Inside these methods, the Calculator component asks React to re-render itself by calling this.setState() with the new input value and the current scale of the input we just edited.

	React calls the Calculator component’s render method to learn what the UI should look like. The values of both inputs are recomputed based on the current temperature and the active scale. The temperature conversion is performed here.

	React calls the render methods of the individual TemperatureInput components with their new props specified by the Calculator. It learns what their UI should look like.

	React calls the render method of the BoilingVerdict component, passing the temperature in Celsius as its props.

	React DOM updates the DOM with the boiling verdict and to match the desired input values. The input we just edited receives its current value, and the other input is updated to the temperature after conversion.



Every update goes through the same steps so the inputs stay in sync.



Lessons Learned

There should be a single “source of truth” for any data that changes in a React application. Usually, the state is first added to the component that needs it for rendering. Then, if other components also need it, you can lift it up to their closest common ancestor. Instead of trying to sync the state between different components, you should rely on the top-down data flow.

Lifting state involves writing more “boilerplate” code than two-way binding approaches, but as a benefit, it takes less work to find and isolate bugs. Since any state “lives” in some component and that component alone can change it, the surface area for bugs is greatly reduced. Additionally, you can implement any custom logic to reject or transform user input.

If something can be derived from either props or state, it probably shouldn’t be in the state. For example, instead of storing both celsiusValue and fahrenheitValue, we store just the last edited temperature and its scale. The value of the other input can always be calculated from them in the render() method. This lets us clear or apply rounding to the other field without losing any precision in the user input.

When you see something wrong in the UI, you can use React Developer Tools to inspect the props and move up the tree until you find the component responsible for updating the state. This lets you trace the bugs to their source:

[image: Monitoring State in React DevTools]

  
  
  ch004.xhtml
  
  




Advanced Guides


Accessibility



Accessibility


Why Accessibility?

Web accessibility (also referred to as a11y) is the design and creation of websites that can be used by everyone. Accessibility support is necessary to allow assistive technology to interpret web pages.

React fully supports building accessible websites, often by using standard HTML techniques.



Standards and Guidelines


WCAG

The Web Content Accessibility Guidelines provides guidelines for creating accessible web sites.

The following WCAG checklists provide an overview:


	WCAG checklist from Wuhcag

	WCAG checklist from WebAIM

	Checklist from The A11Y Project





WAI-ARIA

The Web Accessibility Initiative - Accessible Rich Internet Applications document contains techniques for building fully accessible JavaScript widgets.

Note that all aria-* HTML attributes are fully supported in JSX. Whereas most DOM properties and attributes in React are camelCased, these attributes should be hyphen-cased (also known as kebab-case, lisp-case, etc) as they are in plain HTML:

<input
  type="text"
  aria-label={labelText}
  aria-required="true"
  onChange={onchangeHandler}
  value={inputValue}
  name="name"
/>




Semantic HTML

Semantic HTML is the foundation of accessibility in a web application. Using the various HTML elements to reinforce the meaning of information in our websites will often give us accessibility for free.


	MDN HTML elements reference



Sometimes we break HTML semantics when we add <div> elements to our JSX to make our React code work, especially when working with lists (<ol>, <ul> and <dl>) and the HTML <table>. In these cases we should rather use React Fragments to group together multiple elements.

For example,

import React, { Fragment } from 'react';

function ListItem({ item }) {
  return (
    <Fragment>
      <dt>{item.term}</dt>
      <dd>{item.description}</dd>
    </Fragment>
  );
}

function Glossary(props) {
  return (
    <dl>
      {props.items.map(item => (
        <ListItem item={item} key={item.id} />
      ))}
    </dl>
  );
}

You can map a collection of items to an array of fragments as you would any other type of element as well:

function Glossary(props) {
  return (
    <dl>
      {props.items.map(item => (
        // Fragments should also have a `key` prop when mapping collections
        <Fragment key={item.id}>
          <dt>{item.term}</dt>
          <dd>{item.description}</dd>
        </Fragment>
      ))}
    </dl>
  );
}

When you don’t need any props on the Fragment tag you can use the short syntax, if your tooling supports it:

function ListItem({ item }) {
  return (
    <>
      <dt>{item.term}</dt>
      <dd>{item.description}</dd>
    </>
  );
}

For more info, see the Fragments documentation.



Accessible Forms


Labeling

Every HTML form control, such as <input> and <textarea>, needs to be labeled accessibly. We need to provide descriptive labels that are also exposed to screen readers.

The following resources show us how to do this:


	The W3C shows us how to label elements

	WebAIM shows us how to label elements

	The Paciello Group explains accessible names



Although these standard HTML practices can be directly used in React, note that the for attribute is written as htmlFor in JSX:

<label htmlFor="namedInput">Name:</label>
<input id="namedInput" type="text" name="name"/>



Notifying the user of errors

Error situations need to be understood by all users. The following link shows us how to expose error texts to screen readers as well:


	The W3C demonstrates user notifications

	WebAIM looks at form validation






Focus Control

Ensure that your web application can be fully operated with the keyboard only:


	WebAIM talks about keyboard accessibility




Keyboard focus and focus outline

Keyboard focus refers to the current element in the DOM that is selected to accept input from the keyboard. We see it everywhere as a focus outline similar to that shown in the following image:

[image: Blue keyboard focus outline around a selected link.]

Only ever use CSS that removes this outline, for example by setting outline: 0, if you are replacing it with another focus outline implementation.



Mechanisms to skip to desired content

Provide a mechanism to allow users to skip past navigation sections in your application as this assists and speeds up keyboard navigation.

Skiplinks or Skip Navigation Links are hidden navigation links that only become visible when keyboard users interact with the page. They are very easy to implement with internal page anchors and some styling:


	WebAIM - Skip Navigation Links



Also use landmark elements and roles, such as <main> and <aside>, to demarcate page regions as assistive technology allow the user to quickly navigate to these sections.

Read more about the use of these elements to enhance accessibility here:


	Accessible Landmarks





Programmatically managing focus

Our React applications continuously modify the HTML DOM during runtime, sometimes leading to keyboard focus being lost or set to an unexpected element. In order to repair this, we need to programmatically nudge the keyboard focus in the right direction. For example, by resetting keyboard focus to a button that opened a modal window after that modal window is closed.

MDN Web Docs takes a look at this and describes how we can build keyboard-navigable JavaScript widgets.

To set focus in React, we can use Refs to DOM elements.

Using this, we first create a ref to an element in the JSX of a component class:

class CustomTextInput extends React.Component {
  constructor(props) {
    super(props);
    // Create a ref to store the textInput DOM element
    this.textInput = React.createRef();
  }
  render() {
  // Use the `ref` callback to store a reference to the text input DOM
  // element in an instance field (for example, this.textInput).
    return (
      <input
        type="text"
        ref={this.textInput}
      />
    );
  }
}

Then we can focus it elsewhere in our component when needed:

focus() {
  // Explicitly focus the text input using the raw DOM API
  // Note: we're accessing "current" to get the DOM node
  this.textInput.current.focus();
}


Sometimes a parent component needs to set focus to an element in a child component. We can do this by exposing DOM refs to parent components through a special prop on the child component that forwards the parent’s ref to the child’s DOM node.

function CustomTextInput(props) {
  return (
    <div>
      <input ref={props.inputRef} />
    </div>
  );
}

class Parent extends React.Component {
  constructor(props) {
    super(props);
    this.inputElement = React.createRef();
  }
  render() {
    return (
      <CustomTextInput inputRef={this.inputElement} />
    );
  }
}

// Now you can set focus when required.
this.inputElement.current.focus();

When using a HOC to extend components, it is recommended to forward the ref to the wrapped component using the forwardRef function of React. If a third party HOC does not implement ref forwarding, the above pattern can still be used as a fallback.

A great focus management example is the react-aria-modal. This is a relatively rare example of a fully accessible modal window. Not only does it set initial focus on the cancel button (preventing the keyboard user from accidentally activating the success action) and trap keyboard focus inside the modal, it also resets focus back to the element that initially triggered the modal.


Note:

While this is a very important accessibility feature, it is also a technique that should be used judiciously. Use it to repair the keyboard focus flow when it is disturbed, not to try and anticipate how users want to use applications.






Mouse and pointer events

Ensure that all functionality exposed through a mouse or pointer event can also be accessed using the keyboard alone. Depending only on the pointer device will lead to many cases where keyboard users cannot use your application.

To illustrate this, let’s look at a prolific example of broken accessibility caused by click events. This is the outside click pattern, where a user can disable an opened popover by clicking outside the element.

[image: A toggle button opening a popover list implemented with the click outside pattern and operated with a mouse showing that the close action works.]

This is typically implemented by attaching a click event to the window object that closes the popover:

class OuterClickExample extends React.Component {
  constructor(props) {
    super(props);

    this.state = { isOpen: false };
    this.toggleContainer = React.createRef();

    this.onClickHandler = this.onClickHandler.bind(this);
    this.onClickOutsideHandler = this.onClickOutsideHandler.bind(this);
  }

  componentDidMount() {
    window.addEventListener('click', this.onClickOutsideHandler);
  }

  componentWillUnmount() {
    window.removeEventListener('click', this.onClickOutsideHandler);
  }

  onClickHandler() {
    this.setState(currentState => ({
      isOpen: !currentState.isOpen
    }));
  }

  onClickOutsideHandler(event) {
    if (this.state.isOpen && !this.toggleContainer.current.contains(event.target)) {
      this.setState({ isOpen: false });
    }
  }

  render() {
    return (
      <div ref={this.toggleContainer}>
        <button onClick={this.onClickHandler}>Select an option</button>
        {this.state.isOpen && (
          <ul>
            <li>Option 1</li>
            <li>Option 2</li>
            <li>Option 3</li>
          </ul>
        )}
      </div>
    );
  }
}

This may work fine for users with pointer devices, such as a mouse, but operating this with the keyboard alone leads to broken functionality when tabbing to the next element as the window object never receives a click event. This can lead to obscured functionality which blocks users from using your application.

[image: A toggle button opening a popover list implemented with the click outside pattern and operated with the keyboard showing the popover not being closed on blur and it obscuring other screen elements.]

The same functionality can be achieved by using appropriate event handlers instead, such as onBlur and onFocus:

class BlurExample extends React.Component {
  constructor(props) {
    super(props);

    this.state = { isOpen: false };
    this.timeOutId = null;

    this.onClickHandler = this.onClickHandler.bind(this);
    this.onBlurHandler = this.onBlurHandler.bind(this);
    this.onFocusHandler = this.onFocusHandler.bind(this);
  }

  onClickHandler() {
    this.setState(currentState => ({
      isOpen: !currentState.isOpen
    }));
  }

  // We close the popover on the next tick by using setTimeout.
  // This is necessary because we need to first check if
  // another child of the element has received focus as
  // the blur event fires prior to the new focus event.
  onBlurHandler() {
    this.timeOutId = setTimeout(() => {
      this.setState({
        isOpen: false
      });
    });
  }

  // If a child receives focus, do not close the popover.
  onFocusHandler() {
    clearTimeout(this.timeOutId);
  }

  render() {
    // React assists us by bubbling the blur and
    // focus events to the parent.
    return (
      <div onBlur={this.onBlurHandler}
           onFocus={this.onFocusHandler}>
        <button onClick={this.onClickHandler}
                aria-haspopup="true"
                aria-expanded={this.state.isOpen}>
          Select an option
        </button>
        {this.state.isOpen && (
          <ul>
            <li>Option 1</li>
            <li>Option 2</li>
            <li>Option 3</li>
          </ul>
        )}
      </div>
    );
  }
}

This code exposes the functionality to both pointer device and keyboard users. Also note the added aria-* props to support screen-reader users. For simplicity’s sake the keyboard events to enable arrow key interaction of the popover options have not been implemented.

[image: A popover list correctly closing for both mouse and keyboard users.]

This is one example of many cases where depending on only pointer and mouse events will break functionality for keyboard users. Always testing with the keyboard will immediately highlight the problem areas which can then be fixed by using keyboard aware event handlers.



More Complex Widgets

A more complex user experience should not mean a less accessible one. Whereas accessibility is most easily achieved by coding as close to HTML as possible, even the most complex widget can be coded accessibly.

Here we require knowledge of ARIA Roles as well as ARIA States and Properties. These are toolboxes filled with HTML attributes that are fully supported in JSX and enable us to construct fully accessible, highly functional React components.

Each type of widget has a specific design pattern and is expected to function in a certain way by users and user agents alike:


	WAI-ARIA Authoring Practices - Design Patterns and Widgets

	Heydon Pickering - ARIA Examples

	Inclusive Components





Other Points for Consideration


Setting the language

Indicate the human language of page texts as screen reader software uses this to select the correct voice settings:


	WebAIM - Document Language





Setting the document title

Set the document <title> to correctly describe the current page content as this ensures that the user remains aware of the current page context:


	WCAG - Understanding the Document Title Requirement



We can set this in React using the React Document Title Component.



Color contrast

Ensure that all readable text on your website has sufficient color contrast to remain maximally readable by users with low vision:


	WCAG - Understanding the Color Contrast Requirement

	Everything About Color Contrast And Why You Should Rethink It

	A11yProject - What is Color Contrast



It can be tedious to manually calculate the proper color combinations for all cases in your website so instead, you can calculate an entire accessible color palette with Colorable.

Both the aXe and WAVE tools mentioned below also include color contrast tests and will report on contrast errors.

If you want to extend your contrast testing abilities you can use these tools:


	WebAIM - Color Contrast Checker

	The Paciello Group - Color Contrast Analyzer






Development and Testing Tools

There are a number of tools we can use to assist in the creation of accessible web applications.


The keyboard

By far the easiest and also one of the most important checks is to test if your entire website can be reached and used with the keyboard alone. Do this by:


	Disconnecting your mouse.

	Using Tab and Shift+Tab to browse.

	Using Enter to activate elements.

	Where required, using your keyboard arrow keys to interact with some elements, such as menus and dropdowns.





Development assistance

We can check some accessibility features directly in our JSX code. Often intellisense checks are already provided in JSX aware IDE’s for the ARIA roles, states and properties. We also have access to the following tool:


eslint-plugin-jsx-a11y

The eslint-plugin-jsx-a11y plugin for ESLint provides AST linting feedback regarding accessibility issues in your JSX. Many IDE’s allow you to integrate these findings directly into code analysis and source code windows.

Create React App has this plugin with a subset of rules activated. If you want to enable even more accessibility rules, you can create an .eslintrc file in the root of your project with this content:

{
  "extends": ["react-app", "plugin:jsx-a11y/recommended"],
  "plugins": ["jsx-a11y"]
}





Testing accessibility in the browser

A number of tools exist that can run accessibility audits on web pages in your browser. Please use them in combination with other accessibility checks mentioned here as they can only test the technical accessibility of your HTML.


aXe, aXe-core and react-axe

Deque Systems offers aXe-core for automated and end-to-end accessibility tests of your applications. This module includes integrations for Selenium.

The Accessibility Engine or aXe, is an accessibility inspector browser extension built on aXe-core.

You can also use the @axe-core/react module to report these accessibility findings directly to the console while developing and debugging.



WebAIM WAVE

The Web Accessibility Evaluation Tool is another accessibility browser extension.



Accessibility inspectors and the Accessibility Tree

The Accessibility Tree is a subset of the DOM tree that contains accessible objects for every DOM element that should be exposed to assistive technology, such as screen readers.

In some browsers we can easily view the accessibility information for each element in the accessibility tree:


	Using the Accessibility Inspector in Firefox

	Using the Accessibility Inspector in Chrome

	Using the Accessibility Inspector in OS X Safari






Screen readers

Testing with a screen reader should form part of your accessibility tests.

Please note that browser / screen reader combinations matter. It is recommended that you test your application in the browser best suited to your screen reader of choice.



Commonly Used Screen Readers


NVDA in Firefox

NonVisual Desktop Access or NVDA is an open source Windows screen reader that is widely used.

Refer to the following guides on how to best use NVDA:


	WebAIM - Using NVDA to Evaluate Web Accessibility

	Deque - NVDA Keyboard Shortcuts





VoiceOver in Safari

VoiceOver is an integrated screen reader on Apple devices.

Refer to the following guides on how to activate and use VoiceOver:


	WebAIM - Using VoiceOver to Evaluate Web Accessibility

	Deque - VoiceOver for OS X Keyboard Shortcuts

	Deque - VoiceOver for iOS Shortcuts





JAWS in Internet Explorer

Job Access With Speech or JAWS, is a prolifically used screen reader on Windows.

Refer to the following guides on how to best use JAWS:


	WebAIM - Using JAWS to Evaluate Web Accessibility

	Deque - JAWS Keyboard Shortcuts






Other Screen Readers


ChromeVox in Google Chrome

ChromeVox is an integrated screen reader on Chromebooks and is available as an extension for Google Chrome.

Refer to the following guides on how best to use ChromeVox:


	Google Chromebook Help - Use the Built-in Screen Reader

	ChromeVox Classic Keyboard Shortcuts Reference








Code-Splitting


Bundling

Most React apps will have their files “bundled” using tools like Webpack, Rollup or Browserify. Bundling is the process of following imported files and merging them into a single file: a “bundle”. This bundle can then be included on a webpage to load an entire app at once.


Example

App:

// app.js
import { add } from './math.js';

console.log(add(16, 26)); // 42


// math.js
export function add(a, b) {
  return a + b;
}


Bundle:

function add(a, b) {
  return a + b;
}

console.log(add(16, 26)); // 42



Note:

Your bundles will end up looking a lot different than this.



If you’re using Create React App, Next.js, Gatsby, or a similar tool, you will have a Webpack setup out of the box to bundle your app.

If you aren’t, you’ll need to set up bundling yourself. For example, see the Installation and Getting Started guides on the Webpack docs.




Code Splitting

Bundling is great, but as your app grows, your bundle will grow too. Especially if you are including large third-party libraries. You need to keep an eye on the code you are including in your bundle so that you don’t accidentally make it so large that your app takes a long time to load.

To avoid winding up with a large bundle, it’s good to get ahead of the problem and start “splitting” your bundle. Code-Splitting is a feature supported by bundlers like Webpack, Rollup and Browserify (via factor-bundle) which can create multiple bundles that can be dynamically loaded at runtime.

Code-splitting your app can help you “lazy-load” just the things that are currently needed by the user, which can dramatically improve the performance of your app. While you haven’t reduced the overall amount of code in your app, you’ve avoided loading code that the user may never need, and reduced the amount of code needed during the initial load.



import()

The best way to introduce code-splitting into your app is through the dynamic import() syntax.

Before:

import { add } from './math';

console.log(add(16, 26));


After:

import("./math").then(math => {
  console.log(math.add(16, 26));
});


When Webpack comes across this syntax, it automatically starts code-splitting your app. If you’re using Create React App, this is already configured for you and you can start using it immediately. It’s also supported out of the box in Next.js.

If you’re setting up Webpack yourself, you’ll probably want to read Webpack’s guide on code splitting. Your Webpack config should look vaguely like this.

When using Babel, you’ll need to make sure that Babel can parse the dynamic import syntax but is not transforming it. For that you will need @babel/plugin-syntax-dynamic-import.



React.lazy

The React.lazy function lets you render a dynamic import as a regular component.

Before:

import OtherComponent from './OtherComponent';


After:

const OtherComponent = React.lazy(() => import('./OtherComponent'));


This will automatically load the bundle containing the OtherComponent when this component is first rendered.

React.lazy takes a function that must call a dynamic import(). This must return a Promise which resolves to a module with a default export containing a React component.

The lazy component should then be rendered inside a Suspense component, which allows us to show some fallback content (such as a loading indicator) while we’re waiting for the lazy component to load.

import React, { Suspense } from 'react';

const OtherComponent = React.lazy(() => import('./OtherComponent'));

function MyComponent() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <OtherComponent />
      </Suspense>
    </div>
  );
}


The fallback prop accepts any React elements that you want to render while waiting for the component to load. You can place the Suspense component anywhere above the lazy component. You can even wrap multiple lazy components with a single Suspense component.

import React, { Suspense } from 'react';

const OtherComponent = React.lazy(() => import('./OtherComponent'));
const AnotherComponent = React.lazy(() => import('./AnotherComponent'));

function MyComponent() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <section>
          <OtherComponent />
          <AnotherComponent />
        </section>
      </Suspense>
    </div>
  );
}



Avoiding fallbacks

Any component may suspend as a result of rendering, even components that were already shown to the user. In order for screen content to always be consistent, if an already shown component suspends, React has to hide its tree up to the closest <Suspense> boundary. However, from the user’s perspective, this can be disorienting.

Consider this tab switcher:

import React, { Suspense } from 'react';
import Tabs from './Tabs';
import Glimmer from './Glimmer';

const Comments = React.lazy(() => import('./Comments'));
const Photos = React.lazy(() => import('./Photos'));

function MyComponent() {
  const [tab, setTab] = React.useState('photos');
  
  function handleTabSelect(tab) {
    setTab(tab);
  };

  return (
    <div>
      <Tabs onTabSelect={handleTabSelect} />
      <Suspense fallback={<Glimmer />}>
        {tab === 'photos' ? <Photos /> : <Comments />}
      </Suspense>
    </div>
  );
}


In this example, if tab gets changed from 'photos' to 'comments', but Comments suspends, the user will see a glimmer. This makes sense because the user no longer wants to see Photos, the Comments component is not ready to render anything, and React needs to keep the user experience consistent, so it has no choice but to show the Glimmer above.

However, sometimes this user experience is not desirable. In particular, it is sometimes better to show the “old” UI while the new UI is being prepared. You can use the new startTransition API to make React do this:

function handleTabSelect(tab) {
  startTransition(() => {
    setTab(tab);
  });
}


Here, you tell React that setting tab to 'comments' is not an urgent update, but is a transition that may take some time. React will then keep the old UI in place and interactive, and will switch to showing <Comments /> when it is ready. See Transitions for more info.



Error boundaries

If the other module fails to load (for example, due to network failure), it will trigger an error. You can handle these errors to show a nice user experience and manage recovery with Error Boundaries. Once you’ve created your Error Boundary, you can use it anywhere above your lazy components to display an error state when there’s a network error.

import React, { Suspense } from 'react';
import MyErrorBoundary from './MyErrorBoundary';

const OtherComponent = React.lazy(() => import('./OtherComponent'));
const AnotherComponent = React.lazy(() => import('./AnotherComponent'));

const MyComponent = () => (
  <div>
    <MyErrorBoundary>
      <Suspense fallback={<div>Loading...</div>}>
        <section>
          <OtherComponent />
          <AnotherComponent />
        </section>
      </Suspense>
    </MyErrorBoundary>
  </div>
);





Route-based code splitting

Deciding where in your app to introduce code splitting can be a bit tricky. You want to make sure you choose places that will split bundles evenly, but won’t disrupt the user experience.

A good place to start is with routes. Most people on the web are used to page transitions taking some amount of time to load. You also tend to be re-rendering the entire page at once so your users are unlikely to be interacting with other elements on the page at the same time.

Here’s an example of how to setup route-based code splitting into your app using libraries like React Router with React.lazy.

import React, { Suspense, lazy } from 'react';
import { BrowserRouter as Router, Routes, Route } from 'react-router-dom';

const Home = lazy(() => import('./routes/Home'));
const About = lazy(() => import('./routes/About'));

const App = () => (
  <Router>
    <Suspense fallback={<div>Loading...</div>}>
      <Routes>
        <Route path="/" element={<Home />} />
        <Route path="/about" element={<About />} />
      </Routes>
    </Suspense>
  </Router>
);




Named Exports

React.lazy currently only supports default exports. If the module you want to import uses named exports, you can create an intermediate module that reexports it as the default. This ensures that tree shaking keeps working and that you don’t pull in unused components.

// ManyComponents.js
export const MyComponent = /* ... */;
export const MyUnusedComponent = /* ... */;


// MyComponent.js
export { MyComponent as default } from "./ManyComponents.js";


// MyApp.js
import React, { lazy } from 'react';
const MyComponent = lazy(() => import("./MyComponent.js"));





Context

Context provides a way to pass data through the component tree without having to pass props down manually at every level.

In a typical React application, data is passed top-down (parent to child) via props, but such usage can be cumbersome for certain types of props (e.g. locale preference, UI theme) that are required by many components within an application. Context provides a way to share values like these between components without having to explicitly pass a prop through every level of the tree.


	When to Use Context

	Before You Use Context

	API

	React.createContext

	Context.Provider

	Class.contextType

	Context.Consumer

	Context.displayName




	Examples

	Dynamic Context

	Updating Context from a Nested Component

	Consuming Multiple Contexts




	Caveats

	Legacy API




When to Use Context

Context is designed to share data that can be considered “global” for a tree of React components, such as the current authenticated user, theme, or preferred language. For example, in the code below we manually thread through a “theme” prop in order to style the Button component:

embed:context/motivation-problem.js

Using context, we can avoid passing props through intermediate elements:

embed:context/motivation-solution.js



Before You Use Context

Context is primarily used when some data needs to be accessible by many components at different nesting levels. Apply it sparingly because it makes component reuse more difficult.

If you only want to avoid passing some props through many levels, component composition is often a simpler solution than context.

For example, consider a Page component that passes a user and avatarSize prop several levels down so that deeply nested Link and Avatar components can read it:

<Page user={user} avatarSize={avatarSize} />
// ... which renders ...
<PageLayout user={user} avatarSize={avatarSize} />
// ... which renders ...
<NavigationBar user={user} avatarSize={avatarSize} />
// ... which renders ...
<Link href={user.permalink}>
  <Avatar user={user} size={avatarSize} />
</Link>


It might feel redundant to pass down the user and avatarSize props through many levels if in the end only the Avatar component really needs it. It’s also annoying that whenever the Avatar component needs more props from the top, you have to add them at all the intermediate levels too.

One way to solve this issue without context is to pass down the Avatar component itself so that the intermediate components don’t need to know about the user or avatarSize props:

function Page(props) {
  const user = props.user;
  const userLink = (
    <Link href={user.permalink}>
      <Avatar user={user} size={props.avatarSize} />
    </Link>
  );
  return <PageLayout userLink={userLink} />;
}

// Now, we have:
<Page user={user} avatarSize={avatarSize} />
// ... which renders ...
<PageLayout userLink={...} />
// ... which renders ...
<NavigationBar userLink={...} />
// ... which renders ...
{props.userLink}


With this change, only the top-most Page component needs to know about the Link and Avatar components’ use of user and avatarSize.

This inversion of control can make your code cleaner in many cases by reducing the amount of props you need to pass through your application and giving more control to the root components. Such inversion, however, isn’t the right choice in every case; moving more complexity higher in the tree makes those higher-level components more complicated and forces the lower-level components to be more flexible than you may want.

You’re not limited to a single child for a component. You may pass multiple children, or even have multiple separate “slots” for children, as documented here:

function Page(props) {
  const user = props.user;
  const content = <Feed user={user} />;
  const topBar = (
    <NavigationBar>
      <Link href={user.permalink}>
        <Avatar user={user} size={props.avatarSize} />
      </Link>
    </NavigationBar>
  );
  return (
    <PageLayout
      topBar={topBar}
      content={content}
    />
  );
}


This pattern is sufficient for many cases when you need to decouple a child from its immediate parents. You can take it even further with render props if the child needs to communicate with the parent before rendering.

However, sometimes the same data needs to be accessible by many components in the tree, and at different nesting levels. Context lets you “broadcast” such data, and changes to it, to all components below. Common examples where using context might be simpler than the alternatives include managing the current locale, theme, or a data cache.



API


React.createContext

const MyContext = React.createContext(defaultValue);


Creates a Context object. When React renders a component that subscribes to this Context object it will read the current context value from the closest matching Provider above it in the tree.

The defaultValue argument is only used when a component does not have a matching Provider above it in the tree. This default value can be helpful for testing components in isolation without wrapping them. Note: passing undefined as a Provider value does not cause consuming components to use defaultValue.



Context.Provider

<MyContext.Provider value={/* some value */}>


Every Context object comes with a Provider React component that allows consuming components to subscribe to context changes.

The Provider component accepts a value prop to be passed to consuming components that are descendants of this Provider. One Provider can be connected to many consumers. Providers can be nested to override values deeper within the tree.

All consumers that are descendants of a Provider will re-render whenever the Provider’s value prop changes. The propagation from Provider to its descendant consumers (including .contextType and useContext) is not subject to the shouldComponentUpdate method, so the consumer is updated even when an ancestor component skips an update.

Changes are determined by comparing the new and old values using the same algorithm as Object.is.


Note

The way changes are determined can cause some issues when passing objects as value: see Caveats.





Class.contextType

class MyClass extends React.Component {
  componentDidMount() {
    let value = this.context;
    /* perform a side-effect at mount using the value of MyContext */
  }
  componentDidUpdate() {
    let value = this.context;
    /* ... */
  }
  componentWillUnmount() {
    let value = this.context;
    /* ... */
  }
  render() {
    let value = this.context;
    /* render something based on the value of MyContext */
  }
}
MyClass.contextType = MyContext;


The contextType property on a class can be assigned a Context object created by React.createContext(). Using this property lets you consume the nearest current value of that Context type using this.context. You can reference this in any of the lifecycle methods including the render function.


Note:

You can only subscribe to a single context using this API. If you need to read more than one see Consuming Multiple Contexts.

If you are using the experimental public class fields syntax, you can use a static class field to initialize your contextType.



class MyClass extends React.Component {
  static contextType = MyContext;
  render() {
    let value = this.context;
    /* render something based on the value */
  }
}




Context.Consumer

<MyContext.Consumer>
  {value => /* render something based on the context value */}
</MyContext.Consumer>


A React component that subscribes to context changes. Using this component lets you subscribe to a context within a function component.

Requires a function as a child. The function receives the current context value and returns a React node. The value argument passed to the function will be equal to the value prop of the closest Provider for this context above in the tree. If there is no Provider for this context above, the value argument will be equal to the defaultValue that was passed to createContext().


Note

For more information about the ‘function as a child’ pattern, see render props.





Context.displayName

Context object accepts a displayName string property. React DevTools uses this string to determine what to display for the context.

For example, the following component will appear as MyDisplayName in the DevTools:

const MyContext = React.createContext(/* some value */);
MyContext.displayName = 'MyDisplayName';

<MyContext.Provider> // "MyDisplayName.Provider" in DevTools
<MyContext.Consumer> // "MyDisplayName.Consumer" in DevTools




Examples


Dynamic Context

A more complex example with dynamic values for the theme:

theme-context.js embed:context/theme-detailed-theme-context.js

themed-button.js embed:context/theme-detailed-themed-button.js

app.js embed:context/theme-detailed-app.js



Updating Context from a Nested Component

It is often necessary to update the context from a component that is nested somewhere deeply in the component tree. In this case you can pass a function down through the context to allow consumers to update the context:

theme-context.js embed:context/updating-nested-context-context.js

theme-toggler-button.js embed:context/updating-nested-context-theme-toggler-button.js

app.js embed:context/updating-nested-context-app.js



Consuming Multiple Contexts

To keep context re-rendering fast, React needs to make each context consumer a separate node in the tree.

embed:context/multiple-contexts.js

If two or more context values are often used together, you might want to consider creating your own render prop component that provides both.




Caveats

Because context uses reference identity to determine when to re-render, there are some gotchas that could trigger unintentional renders in consumers when a provider’s parent re-renders. For example, the code below will re-render all consumers every time the Provider re-renders because a new object is always created for value:

embed:context/reference-caveats-problem.js

To get around this, lift the value into the parent’s state:

embed:context/reference-caveats-solution.js



Legacy API


Note

React previously shipped with an experimental context API. The old API will be supported in all 16.x releases, but applications using it should migrate to the new version. The legacy API will be removed in a future major React version. Read the legacy context docs here.






Error Boundaries

In the past, JavaScript errors inside components used to corrupt React’s internal state and cause it to emit cryptic errors on next renders. These errors were always caused by an earlier error in the application code, but React did not provide a way to handle them gracefully in components, and could not recover from them.


Introducing Error Boundaries

A JavaScript error in a part of the UI shouldn’t break the whole app. To solve this problem for React users, React 16 introduces a new concept of an “error boundary”.

Error boundaries are React components that catch JavaScript errors anywhere in their child component tree, log those errors, and display a fallback UI instead of the component tree that crashed. Error boundaries catch errors during rendering, in lifecycle methods, and in constructors of the whole tree below them.


Note

Error boundaries do not catch errors for:


	Event handlers (learn more)

	Asynchronous code (e.g. setTimeout or requestAnimationFrame callbacks)

	Server side rendering

	Errors thrown in the error boundary itself (rather than its children)





A class component becomes an error boundary if it defines either (or both) of the lifecycle methods static getDerivedStateFromError() or componentDidCatch(). Use static getDerivedStateFromError() to render a fallback UI after an error has been thrown. Use componentDidCatch() to log error information.

class ErrorBoundary extends React.Component {
  constructor(props) {
    super(props);
    this.state = { hasError: false };
  }

  static getDerivedStateFromError(error) {
    // Update state so the next render will show the fallback UI.
    return { hasError: true };
  }

  componentDidCatch(error, errorInfo) {
    // You can also log the error to an error reporting service
    logErrorToMyService(error, errorInfo);
  }

  render() {
    if (this.state.hasError) {
      // You can render any custom fallback UI
      return <h1>Something went wrong.</h1>;
    }

    return this.props.children; 
  }
}

Then you can use it as a regular component:

<ErrorBoundary>
  <MyWidget />
</ErrorBoundary>


Error boundaries work like a JavaScript catch {} block, but for components. Only class components can be error boundaries. In practice, most of the time you’ll want to declare an error boundary component once and use it throughout your application.

Note that error boundaries only catch errors in the components below them in the tree. An error boundary can’t catch an error within itself. If an error boundary fails trying to render the error message, the error will propagate to the closest error boundary above it. This, too, is similar to how the catch {} block works in JavaScript.



Live Demo

Check out this example of declaring and using an error boundary.



Where to Place Error Boundaries

The granularity of error boundaries is up to you. You may wrap top-level route components to display a “Something went wrong” message to the user, just like how server-side frameworks often handle crashes. You may also wrap individual widgets in an error boundary to protect them from crashing the rest of the application.



New Behavior for Uncaught Errors

This change has an important implication. As of React 16, errors that were not caught by any error boundary will result in unmounting of the whole React component tree.

We debated this decision, but in our experience it is worse to leave corrupted UI in place than to completely remove it. For example, in a product like Messenger leaving the broken UI visible could lead to somebody sending a message to the wrong person. Similarly, it is worse for a payments app to display a wrong amount than to render nothing.

This change means that as you migrate to React 16, you will likely uncover existing crashes in your application that have been unnoticed before. Adding error boundaries lets you provide better user experience when something goes wrong.

For example, Facebook Messenger wraps content of the sidebar, the info panel, the conversation log, and the message input into separate error boundaries. If some component in one of these UI areas crashes, the rest of them remain interactive.

We also encourage you to use JS error reporting services (or build your own) so that you can learn about unhandled exceptions as they happen in production, and fix them.



Component Stack Traces

React 16 prints all errors that occurred during rendering to the console in development, even if the application accidentally swallows them. In addition to the error message and the JavaScript stack, it also provides component stack traces. Now you can see where exactly in the component tree the failure has happened:

[image: Error caught by Error Boundary component]

  
  
  ch005.xhtml
  
  




API Reference


React Top-Level API

React is the entry point to the React library. If you load React from a <script> tag, these top-level APIs are available on the React global. If you use ES6 with npm, you can write import React from 'react'. If you use ES5 with npm, you can write var React = require('react').


Overview


Components

React components let you split the UI into independent, reusable pieces, and think about each piece in isolation. React components can be defined by subclassing React.Component or React.PureComponent.


	React.Component

	React.PureComponent



If you don’t use ES6 classes, you may use the create-react-class module instead. See Using React without ES6 for more information.

React components can also be defined as functions which can be wrapped:


	React.memo





Creating React Elements

We recommend using JSX to describe what your UI should look like. Each JSX element is just syntactic sugar for calling React.createElement(). You will not typically invoke the following methods directly if you are using JSX.


	createElement()

	createFactory()



See Using React without JSX for more information.



Transforming Elements

React provides several APIs for manipulating elements:


	cloneElement()

	isValidElement()

	React.Children





Fragments

React also provides a component for rendering multiple elements without a wrapper.


	React.Fragment





Refs


	React.createRef

	React.forwardRef





Suspense

Suspense lets components “wait” for something before rendering. Today, Suspense only supports one use case: loading components dynamically with React.lazy. In the future, it will support other use cases like data fetching.


	React.lazy

	React.Suspense





Transitions

Transitions are a new concurrent feature introduced in React 18. They allow you to mark updates as transitions, which tells React that they can be interrupted and avoid going back to Suspense fallbacks for already visible content.


	React.startTransition

	React.useTransition





Hooks

Hooks are a new addition in React 16.8. They let you use state and other React features without writing a class. Hooks have a dedicated docs section and a separate API reference:


	Basic Hooks

	useState

	useEffect

	useContext




	Additional Hooks

	useReducer

	useCallback

	useMemo

	useRef

	useImperativeHandle

	useLayoutEffect

	useDebugValue

	useDeferredValue

	useTransition

	useId




	Library Hooks

	useSyncExternalStore

	useInsertionEffect











Reference


React.Component

React.Component is the base class for React components when they are defined using ES6 classes:

class Greeting extends React.Component {
  render() {
    return <h1>Hello, {this.props.name}</h1>;
  }
}


See the React.Component API Reference for a list of methods and properties related to the base React.Component class.





React.PureComponent

React.PureComponent is similar to React.Component. The difference between them is that React.Component doesn’t implement shouldComponentUpdate(), but React.PureComponent implements it with a shallow prop and state comparison.

If your React component’s render() function renders the same result given the same props and state, you can use React.PureComponent for a performance boost in some cases.


Note

React.PureComponent’s shouldComponentUpdate() only shallowly compares the objects. If these contain complex data structures, it may produce false-negatives for deeper differences. Only extend PureComponent when you expect to have simple props and state, or use forceUpdate() when you know deep data structures have changed. Or, consider using immutable objects to facilitate fast comparisons of nested data.

Furthermore, React.PureComponent’s shouldComponentUpdate() skips prop updates for the whole component subtree. Make sure all the children components are also “pure”.







React.memo

const MyComponent = React.memo(function MyComponent(props) {
  /* render using props */
});


React.memo is a higher order component.

If your component renders the same result given the same props, you can wrap it in a call to React.memo for a performance boost in some cases by memoizing the result. This means that React will skip rendering the component, and reuse the last rendered result.

React.memo only checks for prop changes. If your function component wrapped in React.memo has a useState, useReducer or useContext Hook in its implementation, it will still rerender when state or context change.

By default it will only shallowly compare complex objects in the props object. If you want control over the comparison, you can also provide a custom comparison function as the second argument.

function MyComponent(props) {
  /* render using props */
}
function areEqual(prevProps, nextProps) {
  /*
  return true if passing nextProps to render would return
  the same result as passing prevProps to render,
  otherwise return false
  */
}
export default React.memo(MyComponent, areEqual);


This method only exists as a performance optimization. Do not rely on it to “prevent” a render, as this can lead to bugs.


Note

Unlike the shouldComponentUpdate() method on class components, the areEqual function returns true if the props are equal and false if the props are not equal. This is the inverse from shouldComponentUpdate.







createElement()

React.createElement(
  type,
  [props],
  [...children]
)


Create and return a new React element of the given type. The type argument can be either a tag name string (such as 'div' or 'span'), a React component type (a class or a function), or a React fragment type.

Code written with JSX will be converted to use React.createElement(). You will not typically invoke React.createElement() directly if you are using JSX. See React Without JSX to learn more.





cloneElement()

React.cloneElement(
  element,
  [config],
  [...children]
)

Clone and return a new React element using element as the starting point. config should contain all new props, key, or ref. The resulting element will have the original element’s props with the new props merged in shallowly. New children will replace existing children. key and ref from the original element will be preserved if no key and ref present in the config.

React.cloneElement() is almost equivalent to:

<element.type {...element.props} {...props}>{children}</element.type>


However, it also preserves refs. This means that if you get a child with a ref on it, you won’t accidentally steal it from your ancestor. You will get the same ref attached to your new element. The new ref or key will replace old ones if present.

This API was introduced as a replacement of the deprecated React.addons.cloneWithProps().





createFactory()

React.createFactory(type)


Return a function that produces React elements of a given type. Like React.createElement(), the type argument can be either a tag name string (such as 'div' or 'span'), a React component type (a class or a function), or a React fragment type.

This helper is considered legacy, and we encourage you to either use JSX or use React.createElement() directly instead.

You will not typically invoke React.createFactory() directly if you are using JSX. See React Without JSX to learn more.





isValidElement()

React.isValidElement(object)


Verifies the object is a React element. Returns true or false.





React.Children

React.Children provides utilities for dealing with the this.props.children opaque data structure.


React.Children.map

React.Children.map(children, function[(thisArg)])


Invokes a function on every immediate child contained within children with this set to thisArg. If children is an array it will be traversed and the function will be called for each child in the array. If children is null or undefined, this method will return null or undefined rather than an array.


Note

If children is a Fragment it will be treated as a single child and not traversed.





React.Children.forEach

React.Children.forEach(children, function[(thisArg)])


Like React.Children.map() but does not return an array.



React.Children.count

React.Children.count(children)


Returns the total number of components in children, equal to the number of times that a callback passed to map or forEach would be invoked.



React.Children.only

React.Children.only(children)


Verifies that children has only one child (a React element) and returns it. Otherwise this method throws an error.


Note:

React.Children.only() does not accept the return value of React.Children.map() because it is an array rather than a React element.





React.Children.toArray

React.Children.toArray(children)


Returns the children opaque data structure as a flat array with keys assigned to each child. Useful if you want to manipulate collections of children in your render methods, especially if you want to reorder or slice this.props.children before passing it down.


Note:

React.Children.toArray() changes keys to preserve the semantics of nested arrays when flattening lists of children. That is, toArray prefixes each key in the returned array so that each element’s key is scoped to the input array containing it.








React.Fragment

The React.Fragment component lets you return multiple elements in a render() method without creating an additional DOM element:

render() {
  return (
    <React.Fragment>
      Some text.
      <h2>A heading</h2>
    </React.Fragment>
  );
}


You can also use it with the shorthand <></> syntax. For more information, see React v16.2.0: Improved Support for Fragments.



React.createRef

React.createRef creates a ref that can be attached to React elements via the ref attribute. embed:16-3-release-blog-post/create-ref-example.js



React.forwardRef

React.forwardRef creates a React component that forwards the ref attribute it receives to another component below in the tree. This technique is not very common but is particularly useful in two scenarios:


	Forwarding refs to DOM components

	Forwarding refs in higher-order-components



React.forwardRef accepts a rendering function as an argument. React will call this function with props and ref as two arguments. This function should return a React node.

embed:reference-react-forward-ref.js

In the above example, React passes a ref given to <FancyButton ref={ref}> element as a second argument to the rendering function inside the React.forwardRef call. This rendering function passes the ref to the <button ref={ref}> element.

As a result, after React attaches the ref, ref.current will point directly to the <button> DOM element instance.

For more information, see forwarding refs.



React.lazy

React.lazy() lets you define a component that is loaded dynamically. This helps reduce the bundle size to delay loading components that aren’t used during the initial render.

You can learn how to use it from our code splitting documentation. You might also want to check out this article explaining how to use it in more detail.

// This component is loaded dynamically
const SomeComponent = React.lazy(() => import('./SomeComponent'));


Note that rendering lazy components requires that there’s a <React.Suspense> component higher in the rendering tree. This is how you specify a loading indicator.



React.Suspense

React.Suspense lets you specify the loading indicator in case some components in the tree below it are not yet ready to render. In the future we plan to let Suspense handle more scenarios such as data fetching. You can read about this in our roadmap.

Today, lazy loading components is the only use case supported by <React.Suspense>:

// This component is loaded dynamically
const OtherComponent = React.lazy(() => import('./OtherComponent'));

function MyComponent() {
  return (
    // Displays <Spinner> until OtherComponent loads
    <React.Suspense fallback={<Spinner />}>
      <div>
        <OtherComponent />
      </div>
    </React.Suspense>
  );
}


It is documented in our code splitting guide. Note that lazy components can be deep inside the Suspense tree – it doesn’t have to wrap every one of them. The best practice is to place <Suspense> where you want to see a loading indicator, but to use lazy() wherever you want to do code splitting.


Note

For content that is already shown to the user, switching back to a loading indicator can be disorienting. It is sometimes better to show the “old” UI while the new UI is being prepared. To do this, you can use the new transition APIs startTransition and useTransition to mark updates as transitions and avoid unexpected fallbacks.




React.Suspense in Server Side Rendering

During server side rendering Suspense Boundaries allow you to flush your application in smaller chunks by suspending. When a component suspends we schedule a low priority task to render the closest Suspense boundary’s fallback. If the component unsuspends before we flush the fallback then we send down the actual content and throw away the fallback.



React.Suspense during hydration

Suspense boundaries depend on their parent boundaries being hydrated before they can hydrate, but they can hydrate independently from sibling boundaries. Events on a boundary before its hydrated will cause the boundary to hydrate at a higher priority than neighboring boundaries. Read more




React.startTransition

React.startTransition(callback)


React.startTransition lets you mark updates inside the provided callback as transitions. This method is designed to be used when React.useTransition is not available.


Note:

Updates in a transition yield to more urgent updates such as clicks.

Updates in a transition will not show a fallback for re-suspended content, allowing the user to continue interacting while rendering the update.

React.startTransition does not provide an isPending flag. To track the pending status of a transition see React.useTransition.







React.Component

This page contains a detailed API reference for the React component class definition. It assumes you’re familiar with fundamental React concepts, such as Components and Props, as well as State and Lifecycle. If you’re not, read them first.


Overview

React lets you define components as classes or functions. Components defined as classes currently provide more features which are described in detail on this page. To define a React component class, you need to extend React.Component:

class Welcome extends React.Component {
  render() {
    return <h1>Hello, {this.props.name}</h1>;
  }
}


The only method you must define in a React.Component subclass is called render(). All the other methods described on this page are optional.

We strongly recommend against creating your own base component classes. In React components, code reuse is primarily achieved through composition rather than inheritance.


Note:

React doesn’t force you to use the ES6 class syntax. If you prefer to avoid it, you may use the create-react-class module or a similar custom abstraction instead. Take a look at Using React without ES6 to learn more.




The Component Lifecycle

Each component has several “lifecycle methods” that you can override to run code at particular times in the process. You can use this lifecycle diagram as a cheat sheet. In the list below, commonly used lifecycle methods are marked as bold. The rest of them exist for relatively rare use cases.


Mounting

These methods are called in the following order when an instance of a component is being created and inserted into the DOM:


	constructor()

	static getDerivedStateFromProps()

	render()

	componentDidMount()




Note:

This method is considered legacy and you should avoid it in new code:


	UNSAFE_componentWillMount()







Updating

An update can be caused by changes to props or state. These methods are called in the following order when a component is being re-rendered:


	static getDerivedStateFromProps()

	shouldComponentUpdate()

	render()

	getSnapshotBeforeUpdate()

	componentDidUpdate()




Note:

These methods are considered legacy and you should avoid them in new code:


	UNSAFE_componentWillUpdate()

	UNSAFE_componentWillReceiveProps()







Unmounting

This method is called when a component is being removed from the DOM:


	componentWillUnmount()





Error Handling

These methods are called when there is an error during rendering, in a lifecycle method, or in the constructor of any child component.


	static getDerivedStateFromError()

	componentDidCatch()






Other APIs

Each component also provides some other APIs:


	setState()

	forceUpdate()





Class Properties


	defaultProps

	displayName





Instance Properties


	props

	state








Reference


Commonly Used Lifecycle Methods

The methods in this section cover the vast majority of use cases you’ll encounter creating React components. For a visual reference, check out this lifecycle diagram.



render()

render()


The render() method is the only required method in a class component.

When called, it should examine this.props and this.state and return one of the following types:


	React elements. Typically created via JSX. For example, <div /> and <MyComponent /> are React elements that instruct React to render a DOM node, or another user-defined component, respectively.

	Arrays and fragments. Let you return multiple elements from render. See the documentation on fragments for more details.

	Portals. Let you render children into a different DOM subtree. See the documentation on portals for more details.

	String and numbers. These are rendered as text nodes in the DOM.

	Booleans or null. Render nothing. (Mostly exists to support return test && <Child /> pattern, where test is boolean.)



The render() function should be pure, meaning that it does not modify component state, it returns the same result each time it’s invoked, and it does not directly interact with the browser.

If you need to interact with the browser, perform your work in componentDidMount() or the other lifecycle methods instead. Keeping render() pure makes components easier to think about.


Note

render() will not be invoked if shouldComponentUpdate() returns false.







constructor()

constructor(props)


If you don’t initialize state and you don’t bind methods, you don’t need to implement a constructor for your React component.

The constructor for a React component is called before it is mounted. When implementing the constructor for a React.Component subclass, you should call super(props) before any other statement. Otherwise, this.props will be undefined in the constructor, which can lead to bugs.

Typically, in React constructors are only used for two purposes:


	Initializing local state by assigning an object to this.state.

	Binding event handler methods to an instance.



You should not call setState() in the constructor(). Instead, if your component needs to use local state, assign the initial state to this.state directly in the constructor:

constructor(props) {
  super(props);
  // Don't call this.setState() here!
  this.state = { counter: 0 };
  this.handleClick = this.handleClick.bind(this);
}


Constructor is the only place where you should assign this.state directly. In all other methods, you need to use this.setState() instead.

Avoid introducing any side-effects or subscriptions in the constructor. For those use cases, use componentDidMount() instead.


Note

Avoid copying props into state! This is a common mistake:

constructor(props) {
 super(props);
 // Don't do this!
 this.state = { color: props.color };
}


The problem is that it’s both unnecessary (you can use this.props.color directly instead), and creates bugs (updates to the color prop won’t be reflected in the state).

Only use this pattern if you intentionally want to ignore prop updates. In that case, it makes sense to rename the prop to be called initialColor or defaultColor. You can then force a component to “reset” its internal state by changing its key when necessary.

Read our blog post on avoiding derived state to learn about what to do if you think you need some state to depend on the props.







componentDidMount()

componentDidMount()


componentDidMount() is invoked immediately after a component is mounted (inserted into the tree). Initialization that requires DOM nodes should go here. If you need to load data from a remote endpoint, this is a good place to instantiate the network request.

This method is a good place to set up any subscriptions. If you do that, don’t forget to unsubscribe in componentWillUnmount().

You may call setState() immediately in componentDidMount(). It will trigger an extra rendering, but it will happen before the browser updates the screen. This guarantees that even though the render() will be called twice in this case, the user won’t see the intermediate state. Use this pattern with caution because it often causes performance issues. In most cases, you should be able to assign the initial state in the constructor() instead. It can, however, be necessary for cases like modals and tooltips when you need to measure a DOM node before rendering something that depends on its size or position.





componentDidUpdate()

componentDidUpdate(prevProps, prevState, snapshot)


componentDidUpdate() is invoked immediately after updating occurs. This method is not called for the initial render.

Use this as an opportunity to operate on the DOM when the component has been updated. This is also a good place to do network requests as long as you compare the current props to previous props (e.g. a network request may not be necessary if the props have not changed).

componentDidUpdate(prevProps) {
  // Typical usage (don't forget to compare props):
  if (this.props.userID !== prevProps.userID) {
    this.fetchData(this.props.userID);
  }
}


You may call setState() immediately in componentDidUpdate() but note that it must be wrapped in a condition like in the example above, or you’ll cause an infinite loop. It would also cause an extra re-rendering which, while not visible to the user, can affect the component performance. If you’re trying to “mirror” some state to a prop coming from above, consider using the prop directly instead. Read more about why copying props into state causes bugs.

If your component implements the getSnapshotBeforeUpdate() lifecycle (which is rare), the value it returns will be passed as a third “snapshot” parameter to componentDidUpdate(). Otherwise this parameter will be undefined.


Note

componentDidUpdate() will not be invoked if shouldComponentUpdate() returns false.







componentWillUnmount()

componentWillUnmount()


componentWillUnmount() is invoked immediately before a component is unmounted and destroyed. Perform any necessary cleanup in this method, such as invalidating timers, canceling network requests, or cleaning up any subscriptions that were created in componentDidMount().

You should not call setState() in componentWillUnmount() because the component will never be re-rendered. Once a component instance is unmounted, it will never be mounted again.





Rarely Used Lifecycle Methods

The methods in this section correspond to uncommon use cases. They’re handy once in a while, but most of your components probably don’t need any of them. You can see most of the methods below on this lifecycle diagram if you click the “Show less common lifecycles” checkbox at the top of it.



shouldComponentUpdate()

shouldComponentUpdate(nextProps, nextState)


Use shouldComponentUpdate() to let React know if a component’s output is not affected by the current change in state or props. The default behavior is to re-render on every state change, and in the vast majority of cases you should rely on the default behavior.

shouldComponentUpdate() is invoked before rendering when new props or state are being received. Defaults to true. This method is not called for the initial render or when forceUpdate() is used.

This method only exists as a performance optimization. Do not rely on it to “prevent” a rendering, as this can lead to bugs. Consider using the built-in PureComponent instead of writing shouldComponentUpdate() by hand. PureComponent performs a shallow comparison of props and state, and reduces the chance that you’ll skip a necessary update.

If you are confident you want to write it by hand, you may compare this.props with nextProps and this.state with nextState and return false to tell React the update can be skipped. Note that returning false does not prevent child components from re-rendering when their state changes.

We do not recommend doing deep equality checks or using JSON.stringify() in shouldComponentUpdate(). It is very inefficient and will harm performance.

Currently, if shouldComponentUpdate() returns false, then UNSAFE_componentWillUpdate(), render(), and componentDidUpdate() will not be invoked. In the future React may treat shouldComponentUpdate() as a hint rather than a strict directive, and returning false may still result in a re-rendering of the component.





static getDerivedStateFromProps()

static getDerivedStateFromProps(props, state)


getDerivedStateFromProps is invoked right before calling the render method, both on the initial mount and on subsequent updates. It should return an object to update the state, or null to update nothing.

This method exists for rare use cases where the state depends on changes in props over time. For example, it might be handy for implementing a <Transition> component that compares its previous and next children to decide which of them to animate in and out.

Deriving state leads to verbose code and makes your components difficult to think about. Make sure you’re familiar with simpler alternatives:


	If you need to perform a side effect (for example, data fetching or an animation) in response to a change in props, use componentDidUpdate lifecycle instead.


	If you want to re-compute some data only when a prop changes, use a memoization helper instead.


	If you want to “reset” some state when a prop changes, consider either making a component fully controlled or fully uncontrolled with a key instead.




This method doesn’t have access to the component instance. If you’d like, you can reuse some code between getDerivedStateFromProps() and the other class methods by extracting pure functions of the component props and state outside the class definition.

Note that this method is fired on every render, regardless of the cause. This is in contrast to UNSAFE_componentWillReceiveProps, which only fires when the parent causes a re-render and not as a result of a local setState.





getSnapshotBeforeUpdate()

getSnapshotBeforeUpdate(prevProps, prevState)


getSnapshotBeforeUpdate() is invoked right before the most recently rendered output is committed to e.g. the DOM. It enables your component to capture some information from the DOM (e.g. scroll position) before it is potentially changed. Any value returned by this lifecycle method will be passed as a parameter to componentDidUpdate().

This use case is not common, but it may occur in UIs like a chat thread that need to handle scroll position in a special way.

A snapshot value (or null) should be returned.

For example:

embed:react-component-reference/get-snapshot-before-update.js

In the above examples, it is important to read the scrollHeight property in getSnapshotBeforeUpdate because there may be delays between “render” phase lifecycles (like render) and “commit” phase lifecycles (like getSnapshotBeforeUpdate and componentDidUpdate).





Error boundaries

Error boundaries are React components that catch JavaScript errors anywhere in their child component tree, log those errors, and display a fallback UI instead of the component tree that crashed. Error boundaries catch errors during rendering, in lifecycle methods, and in constructors of the whole tree below them.

A class component becomes an error boundary if it defines either (or both) of the lifecycle methods static getDerivedStateFromError() or componentDidCatch(). Updating state from these lifecycles lets you capture an unhandled JavaScript error in the below tree and display a fallback UI.

Only use error boundaries for recovering from unexpected exceptions; don’t try to use them for control flow.

For more details, see Error Handling in React 16.


Note

Error boundaries only catch errors in the components below them in the tree. An error boundary can’t catch an error within itself.





static getDerivedStateFromError()

static getDerivedStateFromError(error)


This lifecycle is invoked after an error has been thrown by a descendant component. It receives the error that was thrown as a parameter and should return a value to update state.

class ErrorBoundary extends React.Component {
  constructor(props) {
    super(props);
    this.state = { hasError: false };
  }

  static getDerivedStateFromError(error) {
    // Update state so the next render will show the fallback UI.
    return { hasError: true };
  }

  render() {
    if (this.state.hasError) {
      // You can render any custom fallback UI
      return <h1>Something went wrong.</h1>;
    }

    return this.props.children;
  }
}


Note

getDerivedStateFromError() is called during the “render” phase, so side-effects are not permitted. For those use cases, use componentDidCatch() instead.







componentDidCatch()

componentDidCatch(error, info)


This lifecycle is invoked after an error has been thrown by a descendant component. It receives two parameters:


	error - The error that was thrown.

	info - An object with a componentStack key containing information about which component threw the error.



componentDidCatch() is called during the “commit” phase, so side-effects are permitted. It should be used for things like logging errors:

class ErrorBoundary extends React.Component {
  constructor(props) {
    super(props);
    this.state = { hasError: false };
  }

  static getDerivedStateFromError(error) {
    // Update state so the next render will show the fallback UI.
    return { hasError: true };
  }

  componentDidCatch(error, info) {
    // Example "componentStack":
    //   in ComponentThatThrows (created by App)
    //   in ErrorBoundary (created by App)
    //   in div (created by App)
    //   in App
    logComponentStackToMyService(info.componentStack);
  }

  render() {
    if (this.state.hasError) {
      // You can render any custom fallback UI
      return <h1>Something went wrong.</h1>;
    }

    return this.props.children;
  }
}

Production and development builds of React slightly differ in the way componentDidCatch() handles errors.

On development, the errors will bubble up to window, this means that any window.onerror or window.addEventListener('error', callback) will intercept the errors that have been caught by componentDidCatch().

On production, instead, the errors will not bubble up, which means any ancestor error handler will only receive errors not explicitly caught by componentDidCatch().


Note

In the event of an error, you can render a fallback UI with componentDidCatch() by calling setState, but this will be deprecated in a future release. Use static getDerivedStateFromError() to handle fallback rendering instead.







Legacy Lifecycle Methods

The lifecycle methods below are marked as “legacy”. They still work, but we don’t recommend using them in the new code. You can learn more about migrating away from legacy lifecycle methods in this blog post.



UNSAFE_componentWillMount()

UNSAFE_componentWillMount()



Note

This lifecycle was previously named componentWillMount. That name will continue to work until version 17. Use the rename-unsafe-lifecycles codemod to automatically update your components.



UNSAFE_componentWillMount() is invoked just before mounting occurs. It is called before render(), therefore calling setState() synchronously in this method will not trigger an extra rendering. Generally, we recommend using the constructor() instead for initializing state.

Avoid introducing any side-effects or subscriptions in this method. For those use cases, use componentDidMount() instead.

This is the only lifecycle method called on server rendering.





UNSAFE_componentWillReceiveProps()

UNSAFE_componentWillReceiveProps(nextProps)



Note

This lifecycle was previously named componentWillReceiveProps. That name will continue to work until version 17. Use the rename-unsafe-lifecycles codemod to automatically update your components.




Note:

Using this lifecycle method often leads to bugs and inconsistencies


	If you need to perform a side effect (for example, data fetching or an animation) in response to a change in props, use componentDidUpdate lifecycle instead.

	If you used componentWillReceiveProps for re-computing some data only when a prop changes, use a memoization helper instead.

	If you used componentWillReceiveProps to “reset” some state when a prop changes, consider either making a component fully controlled or fully uncontrolled with a key instead.



For other use cases, follow the recommendations in this blog post about derived state.



UNSAFE_componentWillReceiveProps() is invoked before a mounted component receives new props. If you need to update the state in response to prop changes (for example, to reset it), you may compare this.props and nextProps and perform state transitions using this.setState() in this method.

Note that if a parent component causes your component to re-render, this method will be called even if props have not changed. Make sure to compare the current and next values if you only want to handle changes.

React doesn’t call UNSAFE_componentWillReceiveProps() with initial props during mounting. It only calls this method if some of component’s props may update. Calling this.setState() generally doesn’t trigger UNSAFE_componentWillReceiveProps().





UNSAFE_componentWillUpdate()

UNSAFE_componentWillUpdate(nextProps, nextState)



Note

This lifecycle was previously named componentWillUpdate. That name will continue to work until version 17. Use the rename-unsafe-lifecycles codemod to automatically update your components.



UNSAFE_componentWillUpdate() is invoked just before rendering when new props or state are being received. Use this as an opportunity to perform preparation before an update occurs. This method is not called for the initial render.

Note that you cannot call this.setState() here; nor should you do anything else (e.g. dispatch a Redux action) that would trigger an update to a React component before UNSAFE_componentWillUpdate() returns.

Typically, this method can be replaced by componentDidUpdate(). If you were reading from the DOM in this method (e.g. to save a scroll position), you can move that logic to getSnapshotBeforeUpdate().


Note

UNSAFE_componentWillUpdate() will not be invoked if shouldComponentUpdate() returns false.








Other APIs

Unlike the lifecycle methods above (which React calls for you), the methods below are the methods you can call from your components.

There are just two of them: setState() and forceUpdate().


setState()

setState(updater[, callback])


setState() enqueues changes to the component state and tells React that this component and its children need to be re-rendered with the updated state. This is the primary method you use to update the user interface in response to event handlers and server responses.

Think of setState() as a request rather than an immediate command to update the component. For better perceived performance, React may delay it, and then update several components in a single pass. In the rare case that you need to force the DOM update to be applied synchronously, you may wrap it in flushSync, but this may hurt performance.

setState() does not always immediately update the component. It may batch or defer the update until later. This makes reading this.state right after calling setState() a potential pitfall. Instead, use componentDidUpdate or a setState callback (setState(updater, callback)), either of which are guaranteed to fire after the update has been applied. If you need to set the state based on the previous state, read about the updater argument below.

setState() will always lead to a re-render unless shouldComponentUpdate() returns false. If mutable objects are being used and conditional rendering logic cannot be implemented in shouldComponentUpdate(), calling setState() only when the new state differs from the previous state will avoid unnecessary re-renders.

The first argument is an updater function with the signature:

(state, props) => stateChange


state is a reference to the component state at the time the change is being applied. It should not be directly mutated. Instead, changes should be represented by building a new object based on the input from state and props. For instance, suppose we wanted to increment a value in state by props.step:

this.setState((state, props) => {
  return {counter: state.counter + props.step};
});


Both state and props received by the updater function are guaranteed to be up-to-date. The output of the updater is shallowly merged with state.

The second parameter to setState() is an optional callback function that will be executed once setState is completed and the component is re-rendered. Generally we recommend using componentDidUpdate() for such logic instead.

You may optionally pass an object as the first argument to setState() instead of a function:

setState(stateChange[, callback])


This performs a shallow merge of stateChange into the new state, e.g., to adjust a shopping cart item quantity:

this.setState({quantity: 2})


This form of setState() is also asynchronous, and multiple calls during the same cycle may be batched together. For example, if you attempt to increment an item quantity more than once in the same cycle, that will result in the equivalent of:

Object.assign(
  previousState,
  {quantity: state.quantity + 1},
  {quantity: state.quantity + 1},
  ...
)


Subsequent calls will override values from previous calls in the same cycle, so the quantity will only be incremented once. If the next state depends on the current state, we recommend using the updater function form, instead:

this.setState((state) => {
  return {quantity: state.quantity + 1};
});


For more detail, see:


	State and Lifecycle guide

	In depth: When and why are setState() calls batched?

	In depth: Why isn’t this.state updated immediately?







forceUpdate()

component.forceUpdate(callback)


By default, when your component’s state or props change, your component will re-render. If your render() method depends on some other data, you can tell React that the component needs re-rendering by calling forceUpdate().

Calling forceUpdate() will cause render() to be called on the component, skipping shouldComponentUpdate(). This will trigger the normal lifecycle methods for child components, including the shouldComponentUpdate() method of each child. React will still only update the DOM if the markup changes.

Normally you should try to avoid all uses of forceUpdate() and only read from this.props and this.state in render().






Class Properties


defaultProps

defaultProps can be defined as a property on the component class itself, to set the default props for the class. This is used for undefined props, but not for null props. For example:

class CustomButton extends React.Component {
  // ...
}

CustomButton.defaultProps = {
  color: 'blue'
};


If props.color is not provided, it will be set by default to 'blue':

  render() {
    return <CustomButton /> ; // props.color will be set to blue
  }


If props.color is set to null, it will remain null:

  render() {
    return <CustomButton color={null} /> ; // props.color will remain null
  }






displayName

The displayName string is used in debugging messages. Usually, you don’t need to set it explicitly because it’s inferred from the name of the function or class that defines the component. You might want to set it explicitly if you want to display a different name for debugging purposes or when you create a higher-order component, see Wrap the Display Name for Easy Debugging for details.






Instance Properties


props

this.props contains the props that were defined by the caller of this component. See Components and Props for an introduction to props.

In particular, this.props.children is a special prop, typically defined by the child tags in the JSX expression rather than in the tag itself.



state

The state contains data specific to this component that may change over time. The state is user-defined, and it should be a plain JavaScript object.

If some value isn’t used for rendering or data flow (for example, a timer ID), you don’t have to put it in the state. Such values can be defined as fields on the component instance.

See State and Lifecycle for more information about the state.

Never mutate this.state directly, as calling setState() afterwards may replace the mutation you made. Treat this.state as if it were immutable.





ReactDOM

The react-dom package provides DOM-specific methods that can be used at the top level of your app and as an escape hatch to get outside the React model if you need to.

import * as ReactDOM from 'react-dom';


If you use ES5 with npm, you can write:

var ReactDOM = require('react-dom');


The react-dom package also provides modules specific to client and server apps: - react-dom/client - react-dom/server


Overview

The react-dom package exports these methods: - createPortal() - flushSync()

These react-dom methods are also exported, but are considered legacy: - render() - hydrate() - findDOMNode() - unmountComponentAtNode()


Note:

Both render and hydrate have been replaced with new client methods in React 18. These methods will warn that your app will behave as if it’s running React 17 (learn more here).




Browser Support

React supports all modern browsers, although some polyfills are required for older versions.


Note

We do not support older browsers that don’t support ES5 methods or microtasks such as Internet Explorer. You may find that your apps do work in older browsers if polyfills such as es5-shim and es5-sham are included in the page, but you’re on your own if you choose to take this path.






Reference


createPortal()

createPortal(child, container)


Creates a portal. Portals provide a way to render children into a DOM node that exists outside the hierarchy of the DOM component.



flushSync()

flushSync(callback)


Force React to flush any updates inside the provided callback synchronously. This ensures that the DOM is updated immediately.

// Force this state update to be synchronous.
flushSync(() => {
  setCount(count + 1);
});
// By this point, DOM is updated.



Note:

flushSync can significantly hurt performance. Use sparingly.

flushSync may force pending Suspense boundaries to show their fallback state.

flushSync may also run pending effects and synchronously apply any updates they contain before returning.

flushSync may also flush updates outside the callback when necessary to flush the updates inside the callback. For example, if there are pending updates from a click, React may flush those before flushing the updates inside the callback.






Legacy Reference


render()

render(element, container[, callback])



Note:

render has been replaced with createRoot in React 18. See createRoot for more info.



Render a React element into the DOM in the supplied container and return a reference to the component (or returns null for stateless components).

If the React element was previously rendered into container, this will perform an update on it and only mutate the DOM as necessary to reflect the latest React element.

If the optional callback is provided, it will be executed after the component is rendered or updated.


Note:

render() controls the contents of the container node you pass in. Any existing DOM elements inside are replaced when first called. Later calls use React’s DOM diffing algorithm for efficient updates.

render() does not modify the container node (only modifies the children of the container). It may be possible to insert a component to an existing DOM node without overwriting the existing children.

render() currently returns a reference to the root ReactComponent instance. However, using this return value is legacy and should be avoided because future versions of React may render components asynchronously in some cases. If you need a reference to the root ReactComponent instance, the preferred solution is to attach a callback ref to the root element.

Using render() to hydrate a server-rendered container is deprecated. Use hydrateRoot() instead.







hydrate()

hydrate(element, container[, callback])



Note:

hydrate has been replaced with hydrateRoot in React 18. See hydrateRoot for more info.



Same as render(), but is used to hydrate a container whose HTML contents were rendered by ReactDOMServer. React will attempt to attach event listeners to the existing markup.

React expects that the rendered content is identical between the server and the client. It can patch up differences in text content, but you should treat mismatches as bugs and fix them. In development mode, React warns about mismatches during hydration. There are no guarantees that attribute differences will be patched up in case of mismatches. This is important for performance reasons because in most apps, mismatches are rare, and so validating all markup would be prohibitively expensive.

If a single element’s attribute or text content is unavoidably different between the server and the client (for example, a timestamp), you may silence the warning by adding suppressHydrationWarning={true} to the element. It only works one level deep, and is intended to be an escape hatch. Don’t overuse it. Unless it’s text content, React still won’t attempt to patch it up, so it may remain inconsistent until future updates.

If you intentionally need to render something different on the server and the client, you can do a two-pass rendering. Components that render something different on the client can read a state variable like this.state.isClient, which you can set to true in componentDidMount(). This way the initial render pass will render the same content as the server, avoiding mismatches, but an additional pass will happen synchronously right after hydration. Note that this approach will make your components slower because they have to render twice, so use it with caution.

Remember to be mindful of user experience on slow connections. The JavaScript code may load significantly later than the initial HTML render, so if you render something different in the client-only pass, the transition can be jarring. However, if executed well, it may be beneficial to render a “shell” of the application on the server, and only show some of the extra widgets on the client. To learn how to do this without getting the markup mismatch issues, refer to the explanation in the previous paragraph.





unmountComponentAtNode()

unmountComponentAtNode(container)



Note:

unmountComponentAtNode has been replaced with root.unmount() in React 18. See createRoot for more info.



Remove a mounted React component from the DOM and clean up its event handlers and state. If no component was mounted in the container, calling this function does nothing. Returns true if a component was unmounted and false if there was no component to unmount.





findDOMNode()


Note:

findDOMNode is an escape hatch used to access the underlying DOM node. In most cases, use of this escape hatch is discouraged because it pierces the component abstraction. It has been deprecated in StrictMode.



findDOMNode(component)


If this component has been mounted into the DOM, this returns the corresponding native browser DOM element. This method is useful for reading values out of the DOM, such as form field values and performing DOM measurements. In most cases, you can attach a ref to the DOM node and avoid using findDOMNode at all.

When a component renders to null or false, findDOMNode returns null. When a component renders to a string, findDOMNode returns a text DOM node containing that value. As of React 16, a component may return a fragment with multiple children, in which case findDOMNode will return the DOM node corresponding to the first non-empty child.


Note:

findDOMNode only works on mounted components (that is, components that have been placed in the DOM). If you try to call this on a component that has not been mounted yet (like calling findDOMNode() in render() on a component that has yet to be created) an exception will be thrown.

findDOMNode cannot be used on function components.









ReactDOMClient

The react-dom/client package provides client-specific methods used for initializing an app on the client. Most of your components should not need to use this module.

import * as ReactDOM from 'react-dom/client';


If you use ES5 with npm, you can write:

var ReactDOM = require('react-dom/client');



Overview

The following methods can be used in client environments:


	createRoot()

	hydrateRoot()




Browser Support

React supports all modern browsers, although some polyfills are required for older versions.


Note

We do not support older browsers that don’t support ES5 methods or microtasks such as Internet Explorer. You may find that your apps do work in older browsers if polyfills such as es5-shim and es5-sham are included in the page, but you’re on your own if you choose to take this path.






Reference


createRoot()

createRoot(container[, options]);


Create a React root for the supplied container and return the root. The root can be used to render a React element into the DOM with render:

const root = createRoot(container);
root.render(element);


createRoot accepts two options: - onRecoverableError: optional callback called when React automatically recovers from errors. - identifierPrefix: optional prefix React uses for ids generated by React.useId. Useful to avoid conflicts when using multiple roots on the same page. Must be the same prefix used on the server.

The root can also be unmounted with unmount:

root.unmount();



Note:

createRoot() controls the contents of the container node you pass in. Any existing DOM elements inside are replaced when render is called. Later calls use React’s DOM diffing algorithm for efficient updates.

createRoot() does not modify the container node (only modifies the children of the container). It may be possible to insert a component to an existing DOM node without overwriting the existing children.

Using createRoot() to hydrate a server-rendered container is not supported. Use hydrateRoot() instead.







hydrateRoot()

hydrateRoot(container, element[, options])


Same as createRoot(), but is used to hydrate a container whose HTML contents were rendered by ReactDOMServer. React will attempt to attach event listeners to the existing markup.

hydrateRoot accepts two options: - onRecoverableError: optional callback called when React automatically recovers from errors. - identifierPrefix: optional prefix React uses for ids generated by React.useId. Useful to avoid conflicts when using multiple roots on the same page. Must be the same prefix used on the server.


Note

React expects that the rendered content is identical between the server and the client. It can patch up differences in text content, but you should treat mismatches as bugs and fix them. In development mode, React warns about mismatches during hydration. There are no guarantees that attribute differences will be patched up in case of mismatches. This is important for performance reasons because in most apps, mismatches are rare, and so validating all markup would be prohibitively expensive.







ReactDOMServer

The ReactDOMServer object enables you to render components to static markup. Typically, it’s used on a Node server:

// ES modules
import * as ReactDOMServer from 'react-dom/server';
// CommonJS
var ReactDOMServer = require('react-dom/server');



Overview

These methods are only available in the environments with Node.js Streams:


	renderToPipeableStream()

	renderToNodeStream() (Deprecated)

	renderToStaticNodeStream()



These methods are only available in the environments with Web Streams (this includes browsers, Deno, and some modern edge runtimes):


	renderToReadableStream()



The following methods can be used in the environments that don’t support streams:


	renderToString()

	renderToStaticMarkup()





Reference


renderToPipeableStream()

ReactDOMServer.renderToPipeableStream(element, options)


Render a React element to its initial HTML. Returns a stream with a pipe(res) method to pipe the output and abort() to abort the request. Fully supports Suspense and streaming of HTML with “delayed” content blocks “popping in” via inline <script> tags later. Read more

If you call ReactDOM.hydrateRoot() on a node that already has this server-rendered markup, React will preserve it and only attach event handlers, allowing you to have a very performant first-load experience.

let didError = false;
const stream = renderToPipeableStream(
  <App />,
  {
    onShellReady() {
      // The content above all Suspense boundaries is ready.
      // If something errored before we started streaming, we set the error code appropriately.
      res.statusCode = didError ? 500 : 200;
      res.setHeader('Content-type', 'text/html');
      stream.pipe(res);
    },
    onShellError(error) {
      // Something errored before we could complete the shell so we emit an alternative shell.
      res.statusCode = 500;
      res.send(
        '<!doctype html><p>Loading...</p><script src="clientrender.js"></script>'
      );
    },
    onAllReady() {
      // If you don't want streaming, use this instead of onShellReady.
      // This will fire after the entire page content is ready.
      // You can use this for crawlers or static generation.

      // res.statusCode = didError ? 500 : 200;
      // res.setHeader('Content-type', 'text/html');
      // stream.pipe(res);
    },
    onError(err) {
      didError = true;
      console.error(err);
    },
  }
);


See the full list of options.


Note:

This is a Node.js-specific API. Environments with Web Streams, like Deno and modern edge runtimes, should use renderToReadableStream instead.







renderToReadableStream()

ReactDOMServer.renderToReadableStream(element, options);


Streams a React element to its initial HTML. Returns a Promise that resolves to a Readable Stream. Fully supports Suspense and streaming of HTML. Read more

If you call ReactDOM.hydrateRoot() on a node that already has this server-rendered markup, React will preserve it and only attach event handlers, allowing you to have a very performant first-load experience.

let controller = new AbortController();
let didError = false;
try {
  let stream = await renderToReadableStream(
    <html>
      <body>Success</body>
    </html>,
    {
      signal: controller.signal,
      onError(error) {
        didError = true;
        console.error(error);
      }
    }
  );
  
  // This is to wait for all Suspense boundaries to be ready. You can uncomment
  // this line if you want to buffer the entire HTML instead of streaming it.
  // You can use this for crawlers or static generation:

  // await stream.allReady;

  return new Response(stream, {
    status: didError ? 500 : 200,
    headers: {'Content-Type': 'text/html'},
  });
} catch (error) {
  return new Response(
    '<!doctype html><p>Loading...</p><script src="clientrender.js"></script>',
    {
      status: 500,
      headers: {'Content-Type': 'text/html'},
    }
  );
}


See the full list of options.


Note:

This API depends on Web Streams. For Node.js, use renderToPipeableStream instead.







renderToNodeStream() (Deprecated)

ReactDOMServer.renderToNodeStream(element)


Render a React element to its initial HTML. Returns a Node.js Readable stream that outputs an HTML string. The HTML output by this stream is exactly equal to what ReactDOMServer.renderToString would return. You can use this method to generate HTML on the server and send the markup down on the initial request for faster page loads and to allow search engines to crawl your pages for SEO purposes.

If you call ReactDOM.hydrateRoot() on a node that already has this server-rendered markup, React will preserve it and only attach event handlers, allowing you to have a very performant first-load experience.


Note:

Server-only. This API is not available in the browser.

The stream returned from this method will return a byte stream encoded in utf-8. If you need a stream in another encoding, take a look at a project like iconv-lite, which provides transform streams for transcoding text.







renderToStaticNodeStream()

ReactDOMServer.renderToStaticNodeStream(element)


Similar to renderToNodeStream, except this doesn’t create extra DOM attributes that React uses internally, such as data-reactroot. This is useful if you want to use React as a simple static page generator, as stripping away the extra attributes can save some bytes.

The HTML output by this stream is exactly equal to what ReactDOMServer.renderToStaticMarkup would return.

If you plan to use React on the client to make the markup interactive, do not use this method. Instead, use renderToNodeStream on the server and ReactDOM.hydrateRoot() on the client.


Note:

Server-only. This API is not available in the browser.

The stream returned from this method will return a byte stream encoded in utf-8. If you need a stream in another encoding, take a look at a project like iconv-lite, which provides transform streams for transcoding text.







renderToString()

ReactDOMServer.renderToString(element)


Render a React element to its initial HTML. React will return an HTML string. You can use this method to generate HTML on the server and send the markup down on the initial request for faster page loads and to allow search engines to crawl your pages for SEO purposes.

If you call ReactDOM.hydrateRoot() on a node that already has this server-rendered markup, React will preserve it and only attach event handlers, allowing you to have a very performant first-load experience.


Note

This API has limited Suspense support and does not support streaming.

On the server, it is recommended to use either renderToPipeableStream (for Node.js) or renderToReadableStream (for Web Streams) instead.







renderToStaticMarkup()

ReactDOMServer.renderToStaticMarkup(element)


Similar to renderToString, except this doesn’t create extra DOM attributes that React uses internally, such as data-reactroot. This is useful if you want to use React as a simple static page generator, as stripping away the extra attributes can save some bytes.

If you plan to use React on the client to make the markup interactive, do not use this method. Instead, use renderToString on the server and ReactDOM.hydrateRoot() on the client.





DOM Elements

React implements a browser-independent DOM system for performance and cross-browser compatibility. We took the opportunity to clean up a few rough edges in browser DOM implementations.

In React, all DOM properties and attributes (including event handlers) should be camelCased. For example, the HTML attribute tabindex corresponds to the attribute tabIndex in React. The exception is aria-* and data-* attributes, which should be lowercased. For example, you can keep aria-label as aria-label.


Differences In Attributes

There are a number of attributes that work differently between React and HTML:


checked

The checked attribute is supported by <input> components of type checkbox or radio. You can use it to set whether the component is checked. This is useful for building controlled components. defaultChecked is the uncontrolled equivalent, which sets whether the component is checked when it is first mounted.



className

To specify a CSS class, use the className attribute. This applies to all regular DOM and SVG elements like <div>, <a>, and others.

If you use React with Web Components (which is uncommon), use the class attribute instead.



dangerouslySetInnerHTML

dangerouslySetInnerHTML is React’s replacement for using innerHTML in the browser DOM. In general, setting HTML from code is risky because it’s easy to inadvertently expose your users to a cross-site scripting (XSS) attack. So, you can set HTML directly from React, but you have to type out dangerouslySetInnerHTML and pass an object with a __html key, to remind yourself that it’s dangerous. For example:

function createMarkup() {
  return {__html: 'First &middot; Second'};
}

function MyComponent() {
  return <div dangerouslySetInnerHTML={createMarkup()} />;
}




htmlFor

Since for is a reserved word in JavaScript, React elements use htmlFor instead.



onChange

The onChange event behaves as you would expect it to: whenever a form field is changed, this event is fired. We intentionally do not use the existing browser behavior because onChange is a misnomer for its behavior and React relies on this event to handle user input in real time.



selected

If you want to mark an <option> as selected, reference the value of that option in the value of its <select> instead. Check out “The select Tag” for detailed instructions.



style


Note

Some examples in the documentation use style for convenience, but using the style attribute as the primary means of styling elements is generally not recommended. In most cases, className should be used to reference classes defined in an external CSS stylesheet. style is most often used in React applications to add dynamically-computed styles at render time. See also FAQ: Styling and CSS.



The style attribute accepts a JavaScript object with camelCased properties rather than a CSS string. This is consistent with the DOM style JavaScript property, is more efficient, and prevents XSS security holes. For example:

const divStyle = {
  color: 'blue',
  backgroundImage: 'url(' + imgUrl + ')',
};

function HelloWorldComponent() {
  return <div style={divStyle}>Hello World!</div>;
}


Note that styles are not autoprefixed. To support older browsers, you need to supply corresponding style properties:

const divStyle = {
  WebkitTransition: 'all', // note the capital 'W' here
  msTransition: 'all' // 'ms' is the only lowercase vendor prefix
};

function ComponentWithTransition() {
  return <div style={divStyle}>This should work cross-browser</div>;
}


Style keys are camelCased in order to be consistent with accessing the properties on DOM nodes from JS (e.g. node.style.backgroundImage). Vendor prefixes other than ms should begin with a capital letter. This is why WebkitTransition has an uppercase “W”.

React will automatically append a “px” suffix to certain numeric inline style properties. If you want to use units other than “px”, specify the value as a string with the desired unit. For example:

// Result style: '10px'
<div style={{ height: 10 }}>
  Hello World!
</div>

// Result style: '10%'
<div style={{ height: '10%' }}>
  Hello World!
</div>


Not all style properties are converted to pixel strings though. Certain ones remain unitless (eg zoom, order, flex). A complete list of unitless properties can be seen here.



suppressContentEditableWarning

Normally, there is a warning when an element with children is also marked as contentEditable, because it won’t work. This attribute suppresses that warning. Don’t use this unless you are building a library like Draft.js that manages contentEditable manually.



suppressHydrationWarning

If you use server-side React rendering, normally there is a warning when the server and the client render different content. However, in some rare cases, it is very hard or impossible to guarantee an exact match. For example, timestamps are expected to differ on the server and on the client.

If you set suppressHydrationWarning to true, React will not warn you about mismatches in the attributes and the content of that element. It only works one level deep, and is intended to be used as an escape hatch. Don’t overuse it. You can read more about hydration in the ReactDOM.hydrateRoot() documentation.



value

The value attribute is supported by <input>, <select> and <textarea> components. You can use it to set the value of the component. This is useful for building controlled components. defaultValue is the uncontrolled equivalent, which sets the value of the component when it is first mounted.




All Supported HTML Attributes

As of React 16, any standard or custom DOM attributes are fully supported.

React has always provided a JavaScript-centric API to the DOM. Since React components often take both custom and DOM-related props, React uses the camelCase convention just like the DOM APIs:

<div tabIndex={-1} />      // Just like node.tabIndex DOM API
<div className="Button" /> // Just like node.className DOM API
<input readOnly={true} />  // Just like node.readOnly DOM API


These props work similarly to the corresponding HTML attributes, with the exception of the special cases documented above.

Some of the DOM attributes supported by React include:

accept acceptCharset accessKey action allowFullScreen alt async autoComplete
autoFocus autoPlay capture cellPadding cellSpacing challenge charSet checked
cite classID className colSpan cols content contentEditable contextMenu controls
controlsList coords crossOrigin data dateTime default defer dir disabled
download draggable encType form formAction formEncType formMethod formNoValidate
formTarget frameBorder headers height hidden high href hrefLang htmlFor
httpEquiv icon id inputMode integrity is keyParams keyType kind label lang list
loop low manifest marginHeight marginWidth max maxLength media mediaGroup method
min minLength multiple muted name noValidate nonce open optimum pattern
placeholder poster preload profile radioGroup readOnly rel required reversed
role rowSpan rows sandbox scope scoped scrolling seamless selected shape size
sizes span spellCheck src srcDoc srcLang srcSet start step style summary
tabIndex target title type useMap value width wmode wrap

Similarly, all SVG attributes are fully supported:

accentHeight accumulate additive alignmentBaseline allowReorder alphabetic
amplitude arabicForm ascent attributeName attributeType autoReverse azimuth
baseFrequency baseProfile baselineShift bbox begin bias by calcMode capHeight
clip clipPath clipPathUnits clipRule colorInterpolation
colorInterpolationFilters colorProfile colorRendering contentScriptType
contentStyleType cursor cx cy d decelerate descent diffuseConstant direction
display divisor dominantBaseline dur dx dy edgeMode elevation enableBackground
end exponent externalResourcesRequired fill fillOpacity fillRule filter
filterRes filterUnits floodColor floodOpacity focusable fontFamily fontSize
fontSizeAdjust fontStretch fontStyle fontVariant fontWeight format from fx fy
g1 g2 glyphName glyphOrientationHorizontal glyphOrientationVertical glyphRef
gradientTransform gradientUnits hanging horizAdvX horizOriginX ideographic
imageRendering in in2 intercept k k1 k2 k3 k4 kernelMatrix kernelUnitLength
kerning keyPoints keySplines keyTimes lengthAdjust letterSpacing lightingColor
limitingConeAngle local markerEnd markerHeight markerMid markerStart
markerUnits markerWidth mask maskContentUnits maskUnits mathematical mode
numOctaves offset opacity operator order orient orientation origin overflow
overlinePosition overlineThickness paintOrder panose1 pathLength
patternContentUnits patternTransform patternUnits pointerEvents points
pointsAtX pointsAtY pointsAtZ preserveAlpha preserveAspectRatio primitiveUnits
r radius refX refY renderingIntent repeatCount repeatDur requiredExtensions
requiredFeatures restart result rotate rx ry scale seed shapeRendering slope
spacing specularConstant specularExponent speed spreadMethod startOffset
stdDeviation stemh stemv stitchTiles stopColor stopOpacity
strikethroughPosition strikethroughThickness string stroke strokeDasharray
strokeDashoffset strokeLinecap strokeLinejoin strokeMiterlimit strokeOpacity
strokeWidth surfaceScale systemLanguage tableValues targetX targetY textAnchor
textDecoration textLength textRendering to transform u1 u2 underlinePosition
underlineThickness unicode unicodeBidi unicodeRange unitsPerEm vAlphabetic
vHanging vIdeographic vMathematical values vectorEffect version vertAdvY
vertOriginX vertOriginY viewBox viewTarget visibility widths wordSpacing
writingMode x x1 x2 xChannelSelector xHeight xlinkActuate xlinkArcrole
xlinkHref xlinkRole xlinkShow xlinkTitle xlinkType xmlns xmlnsXlink xmlBase
xmlLang xmlSpace y y1 y2 yChannelSelector z zoomAndPan

You may also use custom attributes as long as they’re fully lowercase.




SyntheticEvent

This reference guide documents the SyntheticEvent wrapper that forms part of React’s Event System. See the Handling Events guide to learn more.


Overview

Your event handlers will be passed instances of SyntheticEvent, a cross-browser wrapper around the browser’s native event. It has the same interface as the browser’s native event, including stopPropagation() and preventDefault(), except the events work identically across all browsers.

If you find that you need the underlying browser event for some reason, simply use the nativeEvent attribute to get it. The synthetic events are different from, and do not map directly to, the browser’s native events. For example in onMouseLeave event.nativeEvent will point to a mouseout event. The specific mapping is not part of the public API and may change at any time. Every SyntheticEvent object has the following attributes:

boolean bubbles
boolean cancelable
DOMEventTarget currentTarget
boolean defaultPrevented
number eventPhase
boolean isTrusted
DOMEvent nativeEvent
void preventDefault()
boolean isDefaultPrevented()
void stopPropagation()
boolean isPropagationStopped()
void persist()
DOMEventTarget target
number timeStamp
string type



Note:

As of v17, e.persist() doesn’t do anything because the SyntheticEvent is no longer pooled.




Note:

As of v0.14, returning false from an event handler will no longer stop event propagation. Instead, e.stopPropagation() or e.preventDefault() should be triggered manually, as appropriate.





Supported Events

React normalizes events so that they have consistent properties across different browsers.

The event handlers below are triggered by an event in the bubbling phase. To register an event handler for the capture phase, append Capture to the event name; for example, instead of using onClick, you would use onClickCapture to handle the click event in the capture phase.


	Clipboard Events

	Composition Events

	Keyboard Events

	Focus Events

	Form Events

	Generic Events

	Mouse Events

	Pointer Events

	Selection Events

	Touch Events

	UI Events

	Wheel Events

	Media Events

	Image Events

	Animation Events

	Transition Events

	Other Events







Reference


Clipboard Events

Event names:

onCopy onCut onPaste

Properties:

DOMDataTransfer clipboardData






Composition Events

Event names:

onCompositionEnd onCompositionStart onCompositionUpdate

Properties:

string data






Keyboard Events

Event names:

onKeyDown onKeyPress onKeyUp

Properties:

boolean altKey
number charCode
boolean ctrlKey
boolean getModifierState(key)
string key
number keyCode
string locale
number location
boolean metaKey
boolean repeat
boolean shiftKey
number which


The key property can take any of the values documented in the DOM Level 3 Events spec.





Focus Events

Event names:

onFocus onBlur

These focus events work on all elements in the React DOM, not just form elements.

Properties:

DOMEventTarget relatedTarget



onFocus

The onFocus event is called when the element (or some element inside of it) receives focus. For example, it’s called when the user clicks on a text input.

function Example() {
  return (
    <input
      onFocus={(e) => {
        console.log('Focused on input');
      }}
      placeholder="onFocus is triggered when you click this input."
    />
  )
}




onBlur

The onBlur event handler is called when focus has left the element (or left some element inside of it). For example, it’s called when the user clicks outside of a focused text input.

function Example() {
  return (
    <input
      onBlur={(e) => {
        console.log('Triggered because this input lost focus');
      }}
      placeholder="onBlur is triggered when you click this input and then you click outside of it."
    />
  )
}




Detecting Focus Entering and Leaving

You can use the currentTarget and relatedTarget to differentiate if the focusing or blurring events originated from outside of the parent element. Here is a demo you can copy and paste that shows how to detect focusing a child, focusing the element itself, and focus entering or leaving the whole subtree.

function Example() {
  return (
    <div
      tabIndex={1}
      onFocus={(e) => {
        if (e.currentTarget === e.target) {
          console.log('focused self');
        } else {
          console.log('focused child', e.target);
        }
        if (!e.currentTarget.contains(e.relatedTarget)) {
          // Not triggered when swapping focus between children
          console.log('focus entered self');
        }
      }}
      onBlur={(e) => {
        if (e.currentTarget === e.target) {
          console.log('unfocused self');
        } else {
          console.log('unfocused child', e.target);
        }
        if (!e.currentTarget.contains(e.relatedTarget)) {
          // Not triggered when swapping focus between children
          console.log('focus left self');
        }
      }}
    >
      <input id="1" />
      <input id="2" />
    </div>
  );
}







Form Events

Event names:

onChange onInput onInvalid onReset onSubmit 

For more information about the onChange event, see Forms.





Generic Events

Event names:

onError onLoad





Mouse Events

Event names:

onClick onContextMenu onDoubleClick onDrag onDragEnd onDragEnter onDragExit
onDragLeave onDragOver onDragStart onDrop onMouseDown onMouseEnter onMouseLeave
onMouseMove onMouseOut onMouseOver onMouseUp

The onMouseEnter and onMouseLeave events propagate from the element being left to the one being entered instead of ordinary bubbling and do not have a capture phase.

Properties:

boolean altKey
number button
number buttons
number clientX
number clientY
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
number pageX
number pageY
DOMEventTarget relatedTarget
number screenX
number screenY
boolean shiftKey






Pointer Events

Event names:

onPointerDown onPointerMove onPointerUp onPointerCancel onGotPointerCapture
onLostPointerCapture onPointerEnter onPointerLeave onPointerOver onPointerOut

The onPointerEnter and onPointerLeave events propagate from the element being left to the one being entered instead of ordinary bubbling and do not have a capture phase.

Properties:

As defined in the W3 spec, pointer events extend Mouse Events with the following properties:

number pointerId
number width
number height
number pressure
number tangentialPressure
number tiltX
number tiltY
number twist
string pointerType
boolean isPrimary


A note on cross-browser support:

Pointer events are not yet supported in every browser (at the time of writing this article, supported browsers include: Chrome, Firefox, Edge, and Internet Explorer). React deliberately does not polyfill support for other browsers because a standard-conform polyfill would significantly increase the bundle size of react-dom.

If your application requires pointer events, we recommend adding a third party pointer event polyfill.





Selection Events

Event names:

onSelect





Touch Events

Event names:

onTouchCancel onTouchEnd onTouchMove onTouchStart

Properties:

boolean altKey
DOMTouchList changedTouches
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
boolean shiftKey
DOMTouchList targetTouches
DOMTouchList touches






UI Events

Event names:

onScroll


Note

Starting with React 17, the onScroll event does not bubble in React. This matches the browser behavior and prevents the confusion when a nested scrollable element fires events on a distant parent.



Properties:

number detail
DOMAbstractView view






Wheel Events

Event names:

onWheel

Properties:

number deltaMode
number deltaX
number deltaY
number deltaZ






Media Events

Event names:

onAbort onCanPlay onCanPlayThrough onDurationChange onEmptied onEncrypted
onEnded onError onLoadedData onLoadedMetadata onLoadStart onPause onPlay
onPlaying onProgress onRateChange onSeeked onSeeking onStalled onSuspend
onTimeUpdate onVolumeChange onWaiting





Image Events

Event names:

onLoad onError





Animation Events

Event names:

onAnimationStart onAnimationEnd onAnimationIteration

Properties:

string animationName
string pseudoElement
float elapsedTime






Transition Events

Event names:

onTransitionEnd

Properties:

string propertyName
string pseudoElement
float elapsedTime






Other Events

Event names:

onToggle





Test Utilities

Importing

import ReactTestUtils from 'react-dom/test-utils'; // ES6
var ReactTestUtils = require('react-dom/test-utils'); // ES5 with npm



Overview

ReactTestUtils makes it easy to test React components in the testing framework of your choice. At Facebook we use Jest for painless JavaScript testing. Learn how to get started with Jest through the Jest website’s React Tutorial.


Note:

We recommend using React Testing Library which is designed to enable and encourage writing tests that use your components as the end users do.

For React versions <= 16, the Enzyme library makes it easy to assert, manipulate, and traverse your React Components’ output.




	act()

	mockComponent()

	isElement()

	isElementOfType()

	isDOMComponent()

	isCompositeComponent()

	isCompositeComponentWithType()

	findAllInRenderedTree()

	scryRenderedDOMComponentsWithClass()

	findRenderedDOMComponentWithClass()

	scryRenderedDOMComponentsWithTag()

	findRenderedDOMComponentWithTag()

	scryRenderedComponentsWithType()

	findRenderedComponentWithType()

	renderIntoDocument()

	Simulate





Reference


act()

To prepare a component for assertions, wrap the code rendering it and performing updates inside an act() call. This makes your test run closer to how React works in the browser.


Note

If you use react-test-renderer, it also provides an act export that behaves the same way.



For example, let’s say we have this Counter component:

class Counter extends React.Component {
  constructor(props) {
    super(props);
    this.state = {count: 0};
    this.handleClick = this.handleClick.bind(this);
  }
  componentDidMount() {
    document.title = `You clicked ${this.state.count} times`;
  }
  componentDidUpdate() {
    document.title = `You clicked ${this.state.count} times`;
  }
  handleClick() {
    this.setState(state => ({
      count: state.count + 1,
    }));
  }
  render() {
    return (
      <div>
        <p>You clicked {this.state.count} times</p>
        <button onClick={this.handleClick}>
          Click me
        </button>
      </div>
    );
  }
}


Here is how we can test it:

import React from 'react';
import ReactDOM from 'react-dom/client';
import { act } from 'react-dom/test-utils';
import Counter from './Counter';

let container;

beforeEach(() => {
  container = document.createElement('div');
  document.body.appendChild(container);
});

afterEach(() => {
  document.body.removeChild(container);
  container = null;
});

it('can render and update a counter', () => {
  // Test first render and componentDidMount
  act(() => {
    ReactDOM.createRoot(container).render(<Counter />);
  });
  const button = container.querySelector('button');
  const label = container.querySelector('p');
  expect(label.textContent).toBe('You clicked 0 times');
  expect(document.title).toBe('You clicked 0 times');

  // Test second render and componentDidUpdate
  act(() => {
    button.dispatchEvent(new MouseEvent('click', {bubbles: true}));
  });
  expect(label.textContent).toBe('You clicked 1 times');
  expect(document.title).toBe('You clicked 1 times');
});


	Don’t forget that dispatching DOM events only works when the DOM container is added to the document. You can use a library like React Testing Library to reduce the boilerplate code.


	The recipes document contains more details on how act() behaves, with examples and usage.








mockComponent()

mockComponent(
  componentClass,
  [mockTagName]
)


Pass a mocked component module to this method to augment it with useful methods that allow it to be used as a dummy React component. Instead of rendering as usual, the component will become a simple <div> (or other tag if mockTagName is provided) containing any provided children.


Note:

mockComponent() is a legacy API. We recommend using jest.mock() instead.







isElement()

isElement(element)


Returns true if element is any React element.





isElementOfType()

isElementOfType(
  element,
  componentClass
)


Returns true if element is a React element whose type is of a React componentClass.





isDOMComponent()

isDOMComponent(instance)


Returns true if instance is a DOM component (such as a <div> or <span>).





isCompositeComponent()

isCompositeComponent(instance)


Returns true if instance is a user-defined component, such as a class or a function.





isCompositeComponentWithType()

isCompositeComponentWithType(
  instance,
  componentClass
)


Returns true if instance is a component whose type is of a React componentClass.





findAllInRenderedTree()

findAllInRenderedTree(
  tree,
  test
)


Traverse all components in tree and accumulate all components where test(component) is true. This is not that useful on its own, but it’s used as a primitive for other test utils.





scryRenderedDOMComponentsWithClass()

scryRenderedDOMComponentsWithClass(
  tree,
  className
)


Finds all DOM elements of components in the rendered tree that are DOM components with the class name matching className.





findRenderedDOMComponentWithClass()

findRenderedDOMComponentWithClass(
  tree,
  className
)


Like scryRenderedDOMComponentsWithClass() but expects there to be one result, and returns that one result, or throws exception if there is any other number of matches besides one.





scryRenderedDOMComponentsWithTag()

scryRenderedDOMComponentsWithTag(
  tree,
  tagName
)


Finds all DOM elements of components in the rendered tree that are DOM components with the tag name matching tagName.





findRenderedDOMComponentWithTag()

findRenderedDOMComponentWithTag(
  tree,
  tagName
)


Like scryRenderedDOMComponentsWithTag() but expects there to be one result, and returns that one result, or throws exception if there is any other number of matches besides one.





scryRenderedComponentsWithType()

scryRenderedComponentsWithType(
  tree,
  componentClass
)


Finds all instances of components with type equal to componentClass.





findRenderedComponentWithType()

findRenderedComponentWithType(
  tree,
  componentClass
)


Same as scryRenderedComponentsWithType() but expects there to be one result and returns that one result, or throws exception if there is any other number of matches besides one.





renderIntoDocument()

renderIntoDocument(element)


Render a React element into a detached DOM node in the document. This function requires a DOM. It is effectively equivalent to:

const domContainer = document.createElement('div');
ReactDOM.createRoot(domContainer).render(element);



Note:

You will need to have window, window.document and window.document.createElement globally available before you import React. Otherwise React will think it can’t access the DOM and methods like setState won’t work.








Other Utilities


Simulate

Simulate.{eventName}(
  element,
  [eventData]
)


Simulate an event dispatch on a DOM node with optional eventData event data.

Simulate has a method for every event that React understands.

Clicking an element

// <button ref={(node) => this.button = node}>...</button>
const node = this.button;
ReactTestUtils.Simulate.click(node);


Changing the value of an input field and then pressing ENTER.

// <input ref={(node) => this.textInput = node} />
const node = this.textInput;
node.value = 'giraffe';
ReactTestUtils.Simulate.change(node);
ReactTestUtils.Simulate.keyDown(node, {key: "Enter", keyCode: 13, which: 13});



Note

You will have to provide any event property that you’re using in your component (e.g. keyCode, which, etc…) as React is not creating any of these for you.









Test Renderer

Importing

import TestRenderer from 'react-test-renderer'; // ES6
const TestRenderer = require('react-test-renderer'); // ES5 with npm



Overview

This package provides a React renderer that can be used to render React components to pure JavaScript objects, without depending on the DOM or a native mobile environment.

Essentially, this package makes it easy to grab a snapshot of the platform view hierarchy (similar to a DOM tree) rendered by a React DOM or React Native component without using a browser or jsdom.

Example:

import TestRenderer from 'react-test-renderer';

function Link(props) {
  return <a href={props.page}>{props.children}</a>;
}

const testRenderer = TestRenderer.create(
  <Link page="https://www.facebook.com/">Facebook</Link>
);

console.log(testRenderer.toJSON());
// { type: 'a',
//   props: { href: 'https://www.facebook.com/' },
//   children: [ 'Facebook' ] }


You can use Jest’s snapshot testing feature to automatically save a copy of the JSON tree to a file and check in your tests that it hasn’t changed: Learn more about it.

You can also traverse the output to find specific nodes and make assertions about them.

import TestRenderer from 'react-test-renderer';

function MyComponent() {
  return (
    <div>
      <SubComponent foo="bar" />
      <p className="my">Hello</p>
    </div>
  )
}

function SubComponent() {
  return (
    <p className="sub">Sub</p>
  );
}

const testRenderer = TestRenderer.create(<MyComponent />);
const testInstance = testRenderer.root;

expect(testInstance.findByType(SubComponent).props.foo).toBe('bar');
expect(testInstance.findByProps({className: "sub"}).children).toEqual(['Sub']);



TestRenderer


	TestRenderer.create()

	TestRenderer.act()





TestRenderer instance


	testRenderer.toJSON()

	testRenderer.toTree()

	testRenderer.update()

	testRenderer.unmount()

	testRenderer.getInstance()

	testRenderer.root





TestInstance


	testInstance.find()

	testInstance.findByType()

	testInstance.findByProps()

	testInstance.findAll()

	testInstance.findAllByType()

	testInstance.findAllByProps()

	testInstance.instance

	testInstance.type

	testInstance.props

	testInstance.parent

	testInstance.children






Reference


TestRenderer.create()

TestRenderer.create(element, options);


Create a TestRenderer instance with the passed React element. It doesn’t use the real DOM, but it still fully renders the component tree into memory so you can make assertions about it. Returns a TestRenderer instance.



TestRenderer.act()

TestRenderer.act(callback);


Similar to the act() helper from react-dom/test-utils, TestRenderer.act prepares a component for assertions. Use this version of act() to wrap calls to TestRenderer.create and testRenderer.update.

import {create, act} from 'react-test-renderer';
import App from './app.js'; // The component being tested

// render the component
let root; 
act(() => {
  root = create(<App value={1}/>)
});

// make assertions on root 
expect(root.toJSON()).toMatchSnapshot();

// update with some different props
act(() => {
  root.update(<App value={2}/>);
})

// make assertions on root 
expect(root.toJSON()).toMatchSnapshot();




testRenderer.toJSON()

testRenderer.toJSON()


Return an object representing the rendered tree. This tree only contains the platform-specific nodes like <div> or <View> and their props, but doesn’t contain any user-written components. This is handy for snapshot testing.



testRenderer.toTree()

testRenderer.toTree()


Return an object representing the rendered tree. The representation is more detailed than the one provided by toJSON(), and includes the user-written components. You probably don’t need this method unless you’re writing your own assertion library on top of the test renderer.



testRenderer.update()

testRenderer.update(element)


Re-render the in-memory tree with a new root element. This simulates a React update at the root. If the new element has the same type and key as the previous element, the tree will be updated; otherwise, it will re-mount a new tree.



testRenderer.unmount()

testRenderer.unmount()


Unmount the in-memory tree, triggering the appropriate lifecycle events.



testRenderer.getInstance()

testRenderer.getInstance()


Return the instance corresponding to the root element, if available. This will not work if the root element is a function component because they don’t have instances.



testRenderer.root

testRenderer.root


Returns the root “test instance” object that is useful for making assertions about specific nodes in the tree. You can use it to find other “test instances” deeper below.



testInstance.find()

testInstance.find(test)


Find a single descendant test instance for which test(testInstance) returns true. If test(testInstance) does not return true for exactly one test instance, it will throw an error.



testInstance.findByType()

testInstance.findByType(type)


Find a single descendant test instance with the provided type. If there is not exactly one test instance with the provided type, it will throw an error.



testInstance.findByProps()

testInstance.findByProps(props)


Find a single descendant test instance with the provided props. If there is not exactly one test instance with the provided props, it will throw an error.



testInstance.findAll()

testInstance.findAll(test)


Find all descendant test instances for which test(testInstance) returns true.



testInstance.findAllByType()

testInstance.findAllByType(type)


Find all descendant test instances with the provided type.



testInstance.findAllByProps()

testInstance.findAllByProps(props)


Find all descendant test instances with the provided props.



testInstance.instance

testInstance.instance


The component instance corresponding to this test instance. It is only available for class components, as function components don’t have instances. It matches the this value inside the given component.



testInstance.type

testInstance.type


The component type corresponding to this test instance. For example, a <Button /> component has a type of Button.



testInstance.props

testInstance.props


The props corresponding to this test instance. For example, a <Button size="small" /> component has {size: 'small'} as props.



testInstance.parent

testInstance.parent


The parent test instance of this test instance.



testInstance.children

testInstance.children


The children test instances of this test instance.




Ideas

You can pass createNodeMock function to TestRenderer.create as the option, which allows for custom mock refs. createNodeMock accepts the current element and should return a mock ref object. This is useful when you test a component that relies on refs.

import TestRenderer from 'react-test-renderer';

class MyComponent extends React.Component {
  constructor(props) {
    super(props);
    this.input = null;
  }
  componentDidMount() {
    this.input.focus();
  }
  render() {
    return <input type="text" ref={el => this.input = el} />
  }
}

let focused = false;
TestRenderer.create(
  <MyComponent />,
  {
    createNodeMock: (element) => {
      if (element.type === 'input') {
        // mock a focus function
        return {
          focus: () => {
            focused = true;
          }
        };
      }
      return null;
    }
  }
);
expect(focused).toBe(true);





JavaScript Environment Requirements

React 18 supports all modern browsers (Edge, Firefox, Chrome, Safari, etc).

If you support older browsers and devices such as Internet Explorer which do not provide modern browser features natively or have non-compliant implementations, consider including a global polyfill in your bundled application.

Here is a list of the modern features React 18 uses: - Promise - Symbol - Object.assign

The correct polyfill for these features depend on your environment. For many users, you can configure your Browserlist settings. For others, you may need to import polyfills like core-js directly.



Glossary of React Terms


Single-page Application

A single-page application is an application that loads a single HTML page and all the necessary assets (such as JavaScript and CSS) required for the application to run. Any interactions with the page or subsequent pages do not require a round trip to the server which means the page is not reloaded.

Though you may build a single-page application in React, it is not a requirement. React can also be used for enhancing small parts of existing websites with additional interactivity. Code written in React can coexist peacefully with markup rendered on the server by something like PHP, or with other client-side libraries. In fact, this is exactly how React is being used at Facebook.



ES6, ES2015, ES2016, etc

These acronyms all refer to the most recent versions of the ECMAScript Language Specification standard, which the JavaScript language is an implementation of. The ES6 version (also known as ES2015) includes many additions to the previous versions such as: arrow functions, classes, template literals, let and const statements. You can learn more about specific versions here.



Compilers

A JavaScript compiler takes JavaScript code, transforms it and returns JavaScript code in a different format. The most common use case is to take ES6 syntax and transform it into syntax that older browsers are capable of interpreting. Babel is the compiler most commonly used with React.



Bundlers

Bundlers take JavaScript and CSS code written as separate modules (often hundreds of them), and combine them together into a few files better optimized for the browsers. Some bundlers commonly used in React applications include Webpack and Browserify.



Package Managers

Package managers are tools that allow you to manage dependencies in your project. npm and Yarn are two package managers commonly used in React applications. Both of them are clients for the same npm package registry.



CDN

CDN stands for Content Delivery Network. CDNs deliver cached, static content from a network of servers across the globe.



JSX

JSX is a syntax extension to JavaScript. It is similar to a template language, but it has full power of JavaScript. JSX gets compiled to React.createElement() calls which return plain JavaScript objects called “React elements”. To get a basic introduction to JSX see the docs here and find a more in-depth tutorial on JSX here.

React DOM uses camelCase property naming convention instead of HTML attribute names. For example, tabindex becomes tabIndex in JSX. The attribute class is also written as className since class is a reserved word in JavaScript:

<h1 className="hello">My name is Clementine!</h1>




Elements

React elements are the building blocks of React applications. One might confuse elements with a more widely known concept of “components”. An element describes what you want to see on the screen. React elements are immutable.

const element = <h1>Hello, world</h1>;


Typically, elements are not used directly, but get returned from components.



Components

React components are small, reusable pieces of code that return a React element to be rendered to the page. The simplest version of React component is a plain JavaScript function that returns a React element:

function Welcome(props) {
  return <h1>Hello, {props.name}</h1>;
}


Components can also be ES6 classes:

class Welcome extends React.Component {
  render() {
    return <h1>Hello, {this.props.name}</h1>;
  }
}


Components can be broken down into distinct pieces of functionality and used within other components. Components can return other components, arrays, strings and numbers. A good rule of thumb is that if a part of your UI is used several times (Button, Panel, Avatar), or is complex enough on its own (App, FeedStory, Comment), it is a good candidate to be a reusable component. Component names should also always start with a capital letter (<Wrapper/> not <wrapper/>). See this documentation for more information on rendering components.


props

props are inputs to a React component. They are data passed down from a parent component to a child component.

Remember that props are readonly. They should not be modified in any way:

// Wrong!
props.number = 42;


If you need to modify some value in response to user input or a network response, use state instead.



props.children

props.children is available on every component. It contains the content between the opening and closing tags of a component. For example:

<Welcome>Hello world!</Welcome>


The string Hello world! is available in props.children in the Welcome component:

function Welcome(props) {
  return <p>{props.children}</p>;
}


For components defined as classes, use this.props.children:

class Welcome extends React.Component {
  render() {
    return <p>{this.props.children}</p>;
  }
}




state

A component needs state when some data associated with it changes over time. For example, a Checkbox component might need isChecked in its state, and a NewsFeed component might want to keep track of fetchedPosts in its state.

The most important difference between state and props is that props are passed from a parent component, but state is managed by the component itself. A component cannot change its props, but it can change its state.

For each particular piece of changing data, there should be just one component that “owns” it in its state. Don’t try to synchronize states of two different components. Instead, lift it up to their closest shared ancestor, and pass it down as props to both of them.




Lifecycle Methods

Lifecycle methods are custom functionality that gets executed during the different phases of a component. There are methods available when the component gets created and inserted into the DOM (mounting), when the component updates, and when the component gets unmounted or removed from the DOM.

### Controlled vs. Uncontrolled Components

React has two different approaches to dealing with form inputs.

An input form element whose value is controlled by React is called a controlled component. When a user enters data into a controlled component a change event handler is triggered and your code decides whether the input is valid (by re-rendering with the updated value). If you do not re-render then the form element will remain unchanged.

An uncontrolled component works like form elements do outside of React. When a user inputs data into a form field (an input box, dropdown, etc) the updated information is reflected without React needing to do anything. However, this also means that you can’t force the field to have a certain value.

In most cases you should use controlled components.



Keys

A “key” is a special string attribute you need to include when creating arrays of elements. Keys help React identify which items have changed, are added, or are removed. Keys should be given to the elements inside an array to give the elements a stable identity.

Keys only need to be unique among sibling elements in the same array. They don’t need to be unique across the whole application or even a single component.

Don’t pass something like Math.random() to keys. It is important that keys have a “stable identity” across re-renders so that React can determine when items are added, removed, or re-ordered. Ideally, keys should correspond to unique and stable identifiers coming from your data, such as post.id.



Refs

React supports a special attribute that you can attach to any component. The ref attribute can be an object created by React.createRef() function or a callback function, or a string (in legacy API). When the ref attribute is a callback function, the function receives the underlying DOM element or class instance (depending on the type of element) as its argument. This allows you to have direct access to the DOM element or component instance.

Use refs sparingly. If you find yourself often using refs to “make things happen” in your app, consider getting more familiar with top-down data flow.



Events

Handling events with React elements has some syntactic differences:


	React event handlers are named using camelCase, rather than lowercase.

	With JSX you pass a function as the event handler, rather than a string.





Reconciliation

When a component’s props or state change, React decides whether an actual DOM update is necessary by comparing the newly returned element with the previously rendered one. When they are not equal, React will update the DOM. This process is called “reconciliation”.







  
  
  ch006.xhtml
  
  




Hooks


Introducing Hooks

Hooks are a new addition in React 16.8. They let you use state and other React features without writing a class.

import React, { useState } from 'react';

function Example() {
  // Declare a new state variable, which we'll call "count"
  const [count, setCount] = useState(0);

  return (
    <div>
      <p>You clicked {count} times</p>
      <button onClick={() => setCount(count + 1)}>
        Click me
      </button>
    </div>
  );
}

This new function useState is the first “Hook” we’ll learn about, but this example is just a teaser. Don’t worry if it doesn’t make sense yet!

You can start learning Hooks on the next page. On this page, we’ll continue by explaining why we’re adding Hooks to React and how they can help you write great applications.


Note

React 16.8.0 is the first release to support Hooks. When upgrading, don’t forget to update all packages, including React DOM. React Native has supported Hooks since the 0.59 release of React Native.




Video Introduction

At React Conf 2018, Sophie Alpert and Dan Abramov introduced Hooks, followed by Ryan Florence demonstrating how to refactor an application to use them. Watch the video here:



  
  
  ch007.xhtml
  
  




Testing


Testing Overview

You can test React components similar to testing other JavaScript code.

There are a few ways to test React components. Broadly, they divide into two categories:


	Rendering component trees in a simplified test environment and asserting on their output.

	Running a complete app in a realistic browser environment (also known as “end-to-end” tests).



This documentation section focuses on testing strategies for the first case. While full end-to-end tests can be very useful to prevent regressions to important workflows, such tests are not concerned with React components in particular, and are out of the scope of this section.


Tradeoffs

When choosing testing tools, it is worth considering a few tradeoffs:


	Iteration speed vs Realistic environment: Some tools offer a very quick feedback loop between making a change and seeing the result, but don’t model the browser behavior precisely. Other tools might use a real browser environment, but reduce the iteration speed and are flakier on a continuous integration server.

	How much to mock: With components, the distinction between a “unit” and “integration” test can be blurry. If you’re testing a form, should its test also test the buttons inside of it? Or should a button component have its own test suite? Should refactoring a button ever break the form test?



Different answers may work for different teams and products.



Recommended Tools

Jest is a JavaScript test runner that lets you access the DOM via jsdom. While jsdom is only an approximation of how the browser works, it is often good enough for testing React components. Jest provides a great iteration speed combined with powerful features like mocking modules and timers so you can have more control over how the code executes.

React Testing Library is a set of helpers that let you test React components without relying on their implementation details. This approach makes refactoring a breeze and also nudges you towards best practices for accessibility. Although it doesn’t provide a way to “shallowly” render a component without its children, a test runner like Jest lets you do this by mocking.



Learn More

This section is divided in two pages:


	Recipes: Common patterns when writing tests for React components.

	Environments: What to consider when setting up a testing environment for React components.






Testing Recipes

Common testing patterns for React components.


Note:

This page assumes you’re using Jest as a test runner. If you use a different test runner, you may need to adjust the API, but the overall shape of the solution will likely be the same. Read more details on setting up a testing environment on the Testing Environments page.



On this page, we will primarily use function components. However, these testing strategies don’t depend on implementation details, and work just as well for class components too.


	Setup/Teardown

	act()

	Rendering

	Data Fetching

	Mocking Modules

	Events

	Timers

	Snapshot Testing

	Multiple Renderers

	Something Missing?






Setup/Teardown

For each test, we usually want to render our React tree to a DOM element that’s attached to document. This is important so that it can receive DOM events. When the test ends, we want to “clean up” and unmount the tree from the document.

A common way to do it is to use a pair of beforeEach and afterEach blocks so that they’ll always run and isolate the effects of a test to itself:

import { unmountComponentAtNode } from "react-dom";

let container = null;
beforeEach(() => {
  // setup a DOM element as a render target
  container = document.createElement("div");
  document.body.appendChild(container);
});

afterEach(() => {
  // cleanup on exiting
  unmountComponentAtNode(container);
  container.remove();
  container = null;
});


You may use a different pattern, but keep in mind that we want to execute the cleanup even if a test fails. Otherwise, tests can become “leaky”, and one test can change the behavior of another test. That makes them difficult to debug.





act()

When writing UI tests, tasks like rendering, user events, or data fetching can be considered as “units” of interaction with a user interface. react-dom/test-utils provides a helper called act() that makes sure all updates related to these “units” have been processed and applied to the DOM before you make any assertions:

act(() => {
  // render components
});
// make assertions


This helps make your tests run closer to what real users would experience when using your application. The rest of these examples use act() to make these guarantees.

You might find using act() directly a bit too verbose. To avoid some of the boilerplate, you could use a library like React Testing Library, whose helpers are wrapped with act().


Note:

The name act comes from the Arrange-Act-Assert pattern.







Rendering

Commonly, you might want to test whether a component renders correctly for given props. Consider a simple component that renders a message based on a prop:

// hello.js

import React from "react";

export default function Hello(props) {
  if (props.name) {
    return <h1>Hello, {props.name}!</h1>;
  } else {
    return <span>Hey, stranger</span>;
  }
}


We can write a test for this component:

// hello.test.js

import React from "react";
import { render, unmountComponentAtNode } from "react-dom";
import { act } from "react-dom/test-utils";

import Hello from "./hello";

let container = null;
beforeEach(() => {
  // setup a DOM element as a render target
  container = document.createElement("div");
  document.body.appendChild(container);
});

afterEach(() => {
  // cleanup on exiting
  unmountComponentAtNode(container);
  container.remove();
  container = null;
});

it("renders with or without a name", () => {
  act(() => {
    render(<Hello />, container);
  });
  expect(container.textContent).toBe("Hey, stranger");

  act(() => {
    render(<Hello name="Jenny" />, container);
  });
  expect(container.textContent).toBe("Hello, Jenny!");

  act(() => {
    render(<Hello name="Margaret" />, container);
  });
  expect(container.textContent).toBe("Hello, Margaret!");
});





Data Fetching

Instead of calling real APIs in all your tests, you can mock requests with dummy data. Mocking data fetching with “fake” data prevents flaky tests due to an unavailable backend, and makes them run faster. Note: you may still want to run a subset of tests using an “end-to-end” framework that tells whether the whole app is working together.

// user.js

import React, { useState, useEffect } from "react";

export default function User(props) {
  const [user, setUser] = useState(null);

  async function fetchUserData(id) {
    const response = await fetch("/" + id);
    setUser(await response.json());
  }

  useEffect(() => {
    fetchUserData(props.id);
  }, [props.id]);

  if (!user) {
    return "loading...";
  }

  return (
    <details>
      <summary>{user.name}</summary>
      <strong>{user.age}</strong> years old
      <br />
      lives in {user.address}
    </details>
  );
}


We can write tests for it:

// user.test.js

import React from "react";
import { render, unmountComponentAtNode } from "react-dom";
import { act } from "react-dom/test-utils";
import User from "./user";

let container = null;
beforeEach(() => {
  // setup a DOM element as a render target
  container = document.createElement("div");
  document.body.appendChild(container);
});

afterEach(() => {
  // cleanup on exiting
  unmountComponentAtNode(container);
  container.remove();
  container = null;
});

it("renders user data", async () => {
  const fakeUser = {
    name: "Joni Baez",
    age: "32",
    address: "123, Charming Avenue"
  };

  jest.spyOn(global, "fetch").mockImplementation(() =>
    Promise.resolve({
      json: () => Promise.resolve(fakeUser)
    })
  );

  // Use the asynchronous version of act to apply resolved promises
  await act(async () => {
    render(<User id="123" />, container);
  });

  expect(container.querySelector("summary").textContent).toBe(fakeUser.name);
  expect(container.querySelector("strong").textContent).toBe(fakeUser.age);
  expect(container.textContent).toContain(fakeUser.address);

  // remove the mock to ensure tests are completely isolated
  global.fetch.mockRestore();
});





Mocking Modules

Some modules might not work well inside a testing environment, or may not be as essential to the test itself. Mocking out these modules with dummy replacements can make it easier to write tests for your own code.

Consider a Contact component that embeds a third-party GoogleMap component:

// map.js

import React from "react";

import { LoadScript, GoogleMap } from "react-google-maps";
export default function Map(props) {
  return (
    <LoadScript id="script-loader" googleMapsApiKey="YOUR_API_KEY">
      <GoogleMap id="example-map" center={props.center} />
    </LoadScript>
  );
}

// contact.js

import React from "react";
import Map from "./map";

export default function Contact(props) {
  return (
    <div>
      <address>
        Contact {props.name} via{" "}
        <a data-testid="email" href={"mailto:" + props.email}>
          email
        </a>
        or on their <a data-testid="site" href={props.site}>
          website
        </a>.
      </address>
      <Map center={props.center} />
    </div>
  );
}


If we don’t want to load this component in our tests, we can mock out the dependency itself to a dummy component, and run our tests:

// contact.test.js

import React from "react";
import { render, unmountComponentAtNode } from "react-dom";
import { act } from "react-dom/test-utils";

import Contact from "./contact";
import MockedMap from "./map";

jest.mock("./map", () => {
  return function DummyMap(props) {
    return (
      <div data-testid="map">
        {props.center.lat}:{props.center.long}
      </div>
    );
  };
});

let container = null;
beforeEach(() => {
  // setup a DOM element as a render target
  container = document.createElement("div");
  document.body.appendChild(container);
});

afterEach(() => {
  // cleanup on exiting
  unmountComponentAtNode(container);
  container.remove();
  container = null;
});

it("should render contact information", () => {
  const center = { lat: 0, long: 0 };
  act(() => {
    render(
      <Contact
        name="Joni Baez"
        email="test@example.com"
        site="http://test.com"
        center={center}
      />,
      container
    );
  });

  expect(
    container.querySelector("[data-testid='email']").getAttribute("href")
  ).toEqual("mailto:test@example.com");

  expect(
    container.querySelector('[data-testid="site"]').getAttribute("href")
  ).toEqual("http://test.com");

  expect(container.querySelector('[data-testid="map"]').textContent).toEqual(
    "0:0"
  );
});





Events

We recommend dispatching real DOM events on DOM elements, and then asserting on the result. Consider a Toggle component:

// toggle.js

import React, { useState } from "react";

export default function Toggle(props) {
  const [state, setState] = useState(false);
  return (
    <button
      onClick={() => {
        setState(previousState => !previousState);
        props.onChange(!state);
      }}
      data-testid="toggle"
    >
      {state === true ? "Turn off" : "Turn on"}
    </button>
  );
}


We could write tests for it:

// toggle.test.js

import React from "react";
import { render, unmountComponentAtNode } from "react-dom";
import { act } from "react-dom/test-utils";

import Toggle from "./toggle";

let container = null;
beforeEach(() => {
  // setup a DOM element as a render target
  container = document.createElement("div");
  document.body.appendChild(container);
});

afterEach(() => {
  // cleanup on exiting
  unmountComponentAtNode(container);
  container.remove();
  container = null;
});

it("changes value when clicked", () => {
  const onChange = jest.fn();
  act(() => {
    render(<Toggle onChange={onChange} />, container);
  });

  // get a hold of the button element, and trigger some clicks on it
  const button = document.querySelector("[data-testid=toggle]");
  expect(button.innerHTML).toBe("Turn on");

  act(() => {
    button.dispatchEvent(new MouseEvent("click", { bubbles: true }));
  });

  expect(onChange).toHaveBeenCalledTimes(1);
  expect(button.innerHTML).toBe("Turn off");

  act(() => {
    for (let i = 0; i < 5; i++) {
      button.dispatchEvent(new MouseEvent("click", { bubbles: true }));
    }
  });

  expect(onChange).toHaveBeenCalledTimes(6);
  expect(button.innerHTML).toBe("Turn on");
});

Different DOM events and their properties are described in MDN. Note that you need to pass { bubbles: true } in each event you create for it to reach the React listener because React automatically delegates events to the root.


Note:

React Testing Library offers a more concise helper for firing events.







Timers

Your code might use timer-based functions like setTimeout to schedule more work in the future. In this example, a multiple choice panel waits for a selection and advances, timing out if a selection isn’t made in 5 seconds:

// card.js

import React, { useEffect } from "react";

export default function Card(props) {
  useEffect(() => {
    const timeoutID = setTimeout(() => {
      props.onSelect(null);
    }, 5000);
    return () => {
      clearTimeout(timeoutID);
    };
  }, [props.onSelect]);

  return [1, 2, 3, 4].map(choice => (
    <button
      key={choice}
      data-testid={choice}
      onClick={() => props.onSelect(choice)}
    >
      {choice}
    </button>
  ));
}


We can write tests for this component by leveraging Jest’s timer mocks, and testing the different states it can be in.

// card.test.js

import React from "react";
import { render, unmountComponentAtNode } from "react-dom";
import { act } from "react-dom/test-utils";

import Card from "./card";

let container = null;
beforeEach(() => {
  // setup a DOM element as a render target
  container = document.createElement("div");
  document.body.appendChild(container);
  jest.useFakeTimers();
});

afterEach(() => {
  // cleanup on exiting
  unmountComponentAtNode(container);
  container.remove();
  container = null;
  jest.useRealTimers();
});

it("should select null after timing out", () => {
  const onSelect = jest.fn();
  act(() => {
    render(<Card onSelect={onSelect} />, container);
  });

  // move ahead in time by 100ms
  act(() => {
    jest.advanceTimersByTime(100);
  });
  expect(onSelect).not.toHaveBeenCalled();

  // and then move ahead by 5 seconds
  act(() => {
    jest.advanceTimersByTime(5000);
  });
  expect(onSelect).toHaveBeenCalledWith(null);
});

it("should cleanup on being removed", () => {
  const onSelect = jest.fn();
  act(() => {
    render(<Card onSelect={onSelect} />, container);
  });

  act(() => {
    jest.advanceTimersByTime(100);
  });
  expect(onSelect).not.toHaveBeenCalled();

  // unmount the app
  act(() => {
    render(null, container);
  });

  act(() => {
    jest.advanceTimersByTime(5000);
  });
  expect(onSelect).not.toHaveBeenCalled();
});

it("should accept selections", () => {
  const onSelect = jest.fn();
  act(() => {
    render(<Card onSelect={onSelect} />, container);
  });

  act(() => {
    container
      .querySelector("[data-testid='2']")
      .dispatchEvent(new MouseEvent("click", { bubbles: true }));
  });

  expect(onSelect).toHaveBeenCalledWith(2);
});

You can use fake timers only in some tests. Above, we enabled them by calling jest.useFakeTimers(). The main advantage they provide is that your test doesn’t actually have to wait five seconds to execute, and you also didn’t need to make the component code more convoluted just for testing.





Snapshot Testing

Frameworks like Jest also let you save “snapshots” of data with toMatchSnapshot / toMatchInlineSnapshot. With these, we can “save” the rendered component output and ensure that a change to it has to be explicitly committed as a change to the snapshot.

In this example, we render a component and format the rendered HTML with the pretty package, before saving it as an inline snapshot:

// hello.test.js, again

import React from "react";
import { render, unmountComponentAtNode } from "react-dom";
import { act } from "react-dom/test-utils";
import pretty from "pretty";

import Hello from "./hello";

let container = null;
beforeEach(() => {
  // setup a DOM element as a render target
  container = document.createElement("div");
  document.body.appendChild(container);
});

afterEach(() => {
  // cleanup on exiting
  unmountComponentAtNode(container);
  container.remove();
  container = null;
});

it("should render a greeting", () => {
  act(() => {
    render(<Hello />, container);
  });

  expect(
    pretty(container.innerHTML)
  ).toMatchInlineSnapshot(); /* ... gets filled automatically by jest ... */

  act(() => {
    render(<Hello name="Jenny" />, container);
  });

  expect(
    pretty(container.innerHTML)
  ).toMatchInlineSnapshot(); /* ... gets filled automatically by jest ... */

  act(() => {
    render(<Hello name="Margaret" />, container);
  });

  expect(
    pretty(container.innerHTML)
  ).toMatchInlineSnapshot(); /* ... gets filled automatically by jest ... */
});

It’s typically better to make more specific assertions than to use snapshots. These kinds of tests include implementation details so they break easily, and teams can get desensitized to snapshot breakages. Selectively mocking some child components can help reduce the size of snapshots and keep them readable for the code review.





Multiple Renderers

In rare cases, you may be running a test on a component that uses multiple renderers. For example, you may be running snapshot tests on a component with react-test-renderer, that internally uses render from react-dom inside a child component to render some content. In this scenario, you can wrap updates with act()s corresponding to their renderers.

import { act as domAct } from "react-dom/test-utils";
import { act as testAct, create } from "react-test-renderer";
// ...
let root;
domAct(() => {
  testAct(() => {
    root = create(<App />);
  });
});
expect(root).toMatchSnapshot();






Something Missing?

If some common scenario is not covered, please let us know on the issue tracker for the documentation website.




Testing Environments


This document goes through the factors that can affect your environment and recommendations for some scenarios.


Test runners

Test runners like Jest, mocha, ava let you write test suites as regular JavaScript, and run them as part of your development process. Additionally, test suites are run as part of continuous integration.


	Jest is widely compatible with React projects, supporting features like mocked modules and timers, and jsdom support. If you use Create React App, Jest is already included out of the box with useful defaults.

	Libraries like mocha work well in real browser environments, and could help for tests that explicitly need it.

	End-to-end tests are used for testing longer flows across multiple pages, and require a different setup.





Mocking a rendering surface

Tests often run in an environment without access to a real rendering surface like a browser. For these environments, we recommend simulating a browser with jsdom, a lightweight browser implementation that runs inside Node.js.

In most cases, jsdom behaves like a regular browser would, but doesn’t have features like layout and navigation. This is still useful for most web-based component tests, since it runs quicker than having to start up a browser for each test. It also runs in the same process as your tests, so you can write code to examine and assert on the rendered DOM.

Just like in a real browser, jsdom lets us model user interactions; tests can dispatch events on DOM nodes, and then observe and assert on the side effects of these actions (example).

A large portion of UI tests can be written with the above setup: using Jest as a test runner, rendered to jsdom, with user interactions specified as sequences of browser events, powered by the act() helper (example). For example, a lot of React’s own tests are written with this combination.

If you’re writing a library that tests mostly browser-specific behavior, and requires native browser behavior like layout or real inputs, you could use a framework like mocha.

In an environment where you can’t simulate a DOM (e.g. testing React Native components on Node.js), you could use event simulation helpers to simulate interactions with elements. Alternately, you could use the fireEvent helper from @testing-library/react-native.

Frameworks like Cypress, puppeteer and webdriver are useful for running end-to-end tests.



Mocking functions

When writing tests, we’d like to mock out the parts of our code that don’t have equivalents inside our testing environment (e.g. checking navigator.onLine status inside Node.js). Tests could also spy on some functions, and observe how other parts of the test interact with them. It is then useful to be able to selectively mock these functions with test-friendly versions.

This is especially useful for data fetching. It is usually preferable to use “fake” data for tests to avoid the slowness and flakiness due to fetching from real API endpoints (example). This helps make the tests predictable. Libraries like Jest and sinon, among others, support mocked functions. For end-to-end tests, mocking network can be more difficult, but you might also want to test the real API endpoints in them anyway.



Mocking modules

Some components have dependencies for modules that may not work well in test environments, or aren’t essential to our tests. It can be useful to selectively mock these modules out with suitable replacements (example).

On Node.js, runners like Jest support mocking modules. You could also use libraries like mock-require.



Mocking timers

Components might be using time-based functions like setTimeout, setInterval, or Date.now. In testing environments, it can be helpful to mock these functions out with replacements that let you manually “advance” time. This is great for making sure your tests run fast! Tests that are dependent on timers would still resolve in order, but quicker (example). Most frameworks, including Jest, sinon and lolex, let you mock timers in your tests.

Sometimes, you may not want to mock timers. For example, maybe you’re testing an animation, or interacting with an endpoint that’s sensitive to timing (like an API rate limiter). Libraries with timer mocks let you enable and disable them on a per test/suite basis, so you can explicitly choose how these tests would run.



End-to-end tests

End-to-end tests are useful for testing longer workflows, especially when they’re critical to your business (such as payments or signups). For these tests, you’d probably want to test how a real browser renders the whole app, fetches data from the real API endpoints, uses sessions and cookies, navigates between different links. You might also likely want to make assertions not just on the DOM state, but on the backing data as well (e.g. to verify whether the updates have been persisted to the database).

In this scenario, you would use a framework like Cypress, Playwright or a library like Puppeteer so you can navigate between multiple routes and assert on side effects not just in the browser, but potentially on the backend as well.







  
  
  ch008.xhtml
  
  




Contributing


How to Contribute

React is one of Facebook’s first open source projects that is both under very active development and is also being used to ship code to everybody on facebook.com. We’re still working out the kinks to make contributing to this project as easy and transparent as possible, but we’re not quite there yet. Hopefully this document makes the process for contributing clear and answers some questions that you may have.


Code of Conduct

Facebook has adopted the Contributor Covenant as its Code of Conduct, and we expect project participants to adhere to it. Please read the full text so that you can understand what actions will and will not be tolerated.



Open Development

All work on React happens directly on GitHub. Both core team members and external contributors send pull requests which go through the same review process.



Semantic Versioning

React follows semantic versioning. We release patch versions for critical bugfixes, minor versions for new features or non-essential changes, and major versions for any breaking changes. When we make breaking changes, we also introduce deprecation warnings in a minor version so that our users learn about the upcoming changes and migrate their code in advance. Learn more about our commitment to stability and incremental migration in our versioning policy.

Every significant change is documented in the changelog file.



Branch Organization

Submit all changes directly to the main branch. We don’t use separate branches for development or for upcoming releases. We do our best to keep main in good shape, with all tests passing.

Code that lands in main must be compatible with the latest stable release. It may contain additional features, but no breaking changes. We should be able to release a new minor version from the tip of main at any time.



Feature Flags

To keep the main branch in a releasable state, breaking changes and experimental features must be gated behind a feature flag.

Feature flags are defined in packages/shared/ReactFeatureFlags.js. Some builds of React may enable different sets of feature flags; for example, the React Native build may be configured differently than React DOM. These flags are found in packages/shared/forks. Feature flags are statically typed by Flow, so you can run yarn flow to confirm that you’ve updated all the necessary files.

React’s build system will strip out disabled feature branches before publishing. A continuous integration job runs on every commit to check for changes in bundle size. You can use the change in size as a signal that a feature was gated correctly.



Bugs


Where to Find Known Issues

We are using GitHub Issues for our public bugs. We keep a close eye on this and try to make it clear when we have an internal fix in progress. Before filing a new task, try to make sure your problem doesn’t already exist.



Reporting New Issues

The best way to get your bug fixed is to provide a reduced test case. This JSFiddle template is a great starting point.



Security Bugs

Facebook has a bounty program for the safe disclosure of security bugs. With that in mind, please do not file public issues; go through the process outlined on that page.




How to Get in Touch


	IRC: #reactjs on freenode

	Discussion forums



There is also an active community of React users on the Discord chat platform in case you need help with React.



Proposing a Change

If you intend to change the public API, or make any non-trivial changes to the implementation, we recommend filing an issue. This lets us reach an agreement on your proposal before you put significant effort into it.

If you’re only fixing a bug, it’s fine to submit a pull request right away but we still recommend to file an issue detailing what you’re fixing. This is helpful in case we don’t accept that specific fix but want to keep track of the issue.



Your First Pull Request

Working on your first Pull Request? You can learn how from this free video series:

How to Contribute to an Open Source Project on GitHub

To help you get your feet wet and get you familiar with our contribution process, we have a list of good first issues that contain bugs that have a relatively limited scope. This is a great place to get started.

If you decide to fix an issue, please be sure to check the comment thread in case somebody is already working on a fix. If nobody is working on it at the moment, please leave a comment stating that you intend to work on it so other people don’t accidentally duplicate your effort.

If somebody claims an issue but doesn’t follow up for more than two weeks, it’s fine to take it over but you should still leave a comment.



Sending a Pull Request

The core team is monitoring for pull requests. We will review your pull request and either merge it, request changes to it, or close it with an explanation. For API changes we may need to fix our internal uses at Facebook.com, which could cause some delay. We’ll do our best to provide updates and feedback throughout the process.

Before submitting a pull request, please make sure the following is done:


	Fork the repository and create your branch from main.

	Run yarn in the repository root.

	If you’ve fixed a bug or added code that should be tested, add tests!

	Ensure the test suite passes (yarn test). Tip: yarn test --watch TestName is helpful in development.

	Run yarn test --prod to test in the production environment.

	If you need a debugger, run yarn debug-test --watch TestName, open chrome://inspect, and press “Inspect”.

	Format your code with prettier (yarn prettier).

	Make sure your code lints (yarn lint). Tip: yarn linc to only check changed files.

	Run the Flow typechecks (yarn flow).

	If you haven’t already, complete the CLA.





Contributor License Agreement (CLA)

In order to accept your pull request, we need you to submit a CLA. You only need to do this once, so if you’ve done this for another Facebook open source project, you’re good to go. If you are submitting a pull request for the first time, just let us know that you have completed the CLA and we can cross-check with your GitHub username.

Complete your CLA here.



Contribution Prerequisites


	You have Node installed at LTS and Yarn at v1.2.0+.

	You have JDK installed.

	You have gcc installed or are comfortable installing a compiler if needed. Some of our dependencies may require a compilation step. On OS X, the Xcode Command Line Tools will cover this. On Ubuntu, apt-get install build-essential will install the required packages. Similar commands should work on other Linux distros. Windows will require some additional steps, see the node-gyp installation instructions for details.

	You are familiar with Git.





Development Workflow

After cloning React, run yarn to fetch its dependencies. Then, you can run several commands:


	yarn lint checks the code style.

	yarn linc is like yarn lint but faster because it only checks files that differ in your branch.

	yarn test runs the complete test suite.

	yarn test --watch runs an interactive test watcher.

	yarn test --prod runs tests in the production environment.

	yarn test <pattern> runs tests with matching filenames.

	yarn debug-test is just like yarn test but with a debugger. Open chrome://inspect and press “Inspect”.

	yarn flow runs the Flow typechecks.

	yarn build creates a build folder with all the packages.

	yarn build react/index,react-dom/index --type=UMD creates UMD builds of just React and ReactDOM.



We recommend running yarn test (or its variations above) to make sure you don’t introduce any regressions as you work on your change. However, it can be handy to try your build of React in a real project.

First, run yarn build. This will produce pre-built bundles in build folder, as well as prepare npm packages inside build/packages.

The easiest way to try your changes is to run yarn build react/index,react-dom/index --type=UMD and then open fixtures/packaging/babel-standalone/dev.html. This file already uses react.development.js from the build folder so it will pick up your changes.

If you want to try your changes in your existing React project, you may copy build/node_modules/react/umd/react.development.js, build/node_modules/react-dom/umd/react-dom.development.js, or any other build products into your app and use them instead of the stable version.

If your project uses React from npm, you may delete react and react-dom in its dependencies and use yarn link to point them to your local build folder. Note that instead of --type=UMD you’ll want to pass --type=NODE when building. You’ll also need to build the scheduler package:

cd ~/path_to_your_react_clone/
yarn build react/index,react/jsx,react-dom/index,scheduler --type=NODE

cd build/node_modules/react
yarn link
cd build/node_modules/react-dom
yarn link

cd ~/path/to/your/project
yarn link react react-dom


Every time you run yarn build in the React folder, the updated versions will appear in your project’s node_modules. You can then rebuild your project to try your changes.

If some package is still missing (e.g. maybe you use react-dom/server in your project), you can always do a full build with yarn build. Note that running yarn build without options takes a long time.

We still require that your pull request contains unit tests for any new functionality. This way we can ensure that we don’t break your code in the future.



Style Guide

We use an automatic code formatter called Prettier. Run yarn prettier after making any changes to the code.

Then, our linter will catch most issues that may exist in your code. You can check the status of your code styling by simply running yarn linc.

However, there are still some styles that the linter cannot pick up. If you are unsure about something, looking at Airbnb’s Style Guide will guide you in the right direction.



Request for Comments (RFC)

Many changes, including bug fixes and documentation improvements can be implemented and reviewed via the normal GitHub pull request workflow.

Some changes though are “substantial”, and we ask that these be put through a bit of a design process and produce a consensus among the React core team.

The “RFC” (request for comments) process is intended to provide a consistent and controlled path for new features to enter the project. You can contribute by visiting the rfcs repository.



License

By contributing to React, you agree that your contributions will be licensed under its MIT license.



What Next?

Read the next section to learn how the codebase is organized.




Codebase Overview

This section will give you an overview of the React codebase organization, its conventions, and the implementation.

If you want to contribute to React we hope that this guide will help you feel more comfortable making changes.

We don’t necessarily recommend any of these conventions in React apps. Many of them exist for historical reasons and might change with time.


Top-Level Folders

After cloning the React repository, you will see a few top-level folders in it:


	packages contains metadata (such as package.json) and the source code (src subdirectory) for all packages in the React repository. If your change is related to the code, the src subdirectory of each package is where you’ll spend most of your time.

	fixtures contains a few small React test applications for contributors.

	build is the build output of React. It is not in the repository but it will appear in your React clone after you build it for the first time.



The documentation is hosted in a separate repository from React.

There are a few other top-level folders but they are mostly used for the tooling and you likely won’t ever encounter them when contributing.



Colocated Tests

We don’t have a top-level directory for unit tests. Instead, we put them into a directory called __tests__ relative to the files that they test.

For example, a test for setInnerHTML.js is located in __tests__/setInnerHTML-test.js right next to it.



Warnings and Invariants

The React codebase uses console.error to display warnings:

if (__DEV__) {
  console.error('Something is wrong.');
}


Warnings are only enabled in development. In production, they are completely stripped out. If you need to forbid some code path from executing, use invariant module instead:

var invariant = require('invariant');

invariant(
  2 + 2 === 4,
  'You shall not pass!'
);


The invariant is thrown when the invariant condition is false.

“Invariant” is just a way of saying “this condition always holds true”. You can think about it as making an assertion.

It is important to keep development and production behavior similar, so invariant throws both in development and in production. The error messages are automatically replaced with error codes in production to avoid negatively affecting the byte size.



Development and Production

You can use __DEV__ pseudo-global variable in the codebase to guard development-only blocks of code.

It is inlined during the compile step, and turns into process.env.NODE_ENV !== 'production' checks in the CommonJS builds.

For standalone builds, it becomes true in the unminified build, and gets completely stripped out with the if blocks it guards in the minified build.

if (__DEV__) {
  // This code will only run in development.
}




Flow

We recently started introducing Flow checks to the codebase. Files marked with the @flow annotation in the license header comment are being typechecked.

We accept pull requests adding Flow annotations to existing code. Flow annotations look like this:

ReactRef.detachRefs = function(
  instance: ReactInstance,
  element: ReactElement | string | number | null | false,
): void {
  // ...
}


When possible, new code should use Flow annotations. You can run yarn flow locally to check your code with Flow.



Multiple Packages

React is a monorepo. Its repository contains multiple separate packages so that their changes can be coordinated together, and issues live in one place.



React Core

The “core” of React includes all the top-level React APIs, for example:


	React.createElement()

	React.Component

	React.Children



React core only includes the APIs necessary to define components. It does not include the reconciliation algorithm or any platform-specific code. It is used both by React DOM and React Native components.

The code for React core is located in packages/react in the source tree. It is available on npm as the react package. The corresponding standalone browser build is called react.js, and it exports a global called React.



Renderers

React was originally created for the DOM but it was later adapted to also support native platforms with React Native. This introduced the concept of “renderers” to React internals.

Renderers manage how a React tree turns into the underlying platform calls.

Renderers are also located in packages/:


	React DOM Renderer renders React components to the DOM. It implements top-level ReactDOM APIs and is available as react-dom npm package. It can also be used as standalone browser bundle called react-dom.js that exports a ReactDOM global.

	React Native Renderer renders React components to native views. It is used internally by React Native.

	React Test Renderer renders React components to JSON trees. It is used by the Snapshot Testing feature of Jest and is available as react-test-renderer npm package.



The only other officially supported renderer is react-art. It used to be in a separate GitHub repository but we moved it into the main source tree for now.


Note:

Technically the react-native-renderer is a very thin layer that teaches React to interact with React Native implementation. The real platform-specific code managing the native views lives in the React Native repository together with its components.





Reconcilers

Even vastly different renderers like React DOM and React Native need to share a lot of logic. In particular, the reconciliation algorithm should be as similar as possible so that declarative rendering, custom components, state, lifecycle methods, and refs work consistently across platforms.

To solve this, different renderers share some code between them. We call this part of React a “reconciler”. When an update such as setState() is scheduled, the reconciler calls render() on components in the tree and mounts, updates, or unmounts them.

Reconcilers are not packaged separately because they currently have no public API. Instead, they are exclusively used by renderers such as React DOM and React Native.



Stack Reconciler

The “stack” reconciler is the implementation powering React 15 and earlier. We have since stopped using it, but it is documented in detail in the next section.



Fiber Reconciler

The “fiber” reconciler is a new effort aiming to resolve the problems inherent in the stack reconciler and fix a few long-standing issues. It has been the default reconciler since React 16.

Its main goals are:


	Ability to split interruptible work in chunks.

	Ability to prioritize, rebase and reuse work in progress.

	Ability to yield back and forth between parents and children to support layout in React.

	Ability to return multiple elements from render().

	Better support for error boundaries.



You can read more about React Fiber Architecture here and here. While it has shipped with React 16, the async features are not enabled by default yet.

Its source code is located in packages/react-reconciler.



Event System

React implements a layer over native events to smooth out cross-browser differences. Its source code is located in packages/react-dom/src/events.



What Next?

Read the next section to learn about the pre-React 16 implementation of reconciler in more detail. We haven’t documented the internals of the new reconciler yet.




Implementation Notes

This section is a collection of implementation notes for the stack reconciler.

It is very technical and assumes a strong understanding of React public API as well as how it’s divided into core, renderers, and the reconciler. If you’re not very familiar with the React codebase, read the codebase overview first.

It also assumes an understanding of the differences between React components, their instances, and elements.

The stack reconciler was used in React 15 and earlier. It is located at src/renderers/shared/stack/reconciler.


Video: Building React from Scratch

Paul O’Shannessy gave a talk about building React from scratch that largely inspired this document.

Both this document and his talk are simplifications of the real codebase so you might get a better understanding by getting familiar with both of them.



Overview

The reconciler itself doesn’t have a public API. Renderers like React DOM and React Native use it to efficiently update the user interface according to the React components written by the user.



Mounting as a Recursive Process

Let’s consider the first time you mount a component:

const root = ReactDOM.createRoot(rootEl);
root.render(<App />);


root.render will pass <App /> along to the reconciler. Remember that <App /> is a React element, that is, a description of what to render. You can think about it as a plain object:

console.log(<App />);
// { type: App, props: {} }


The reconciler will check if App is a class or a function.

If App is a function, the reconciler will call App(props) to get the rendered element.

If App is a class, the reconciler will instantiate an App with new App(props), call the componentWillMount() lifecycle method, and then will call the render() method to get the rendered element.

Either way, the reconciler will learn the element App “rendered to”.

This process is recursive. App may render to a <Greeting />, Greeting may render to a <Button />, and so on. The reconciler will “drill down” through user-defined components recursively as it learns what each component renders to.

You can imagine this process as a pseudocode:

function isClass(type) {
  // React.Component subclasses have this flag
  return (
    Boolean(type.prototype) &&
    Boolean(type.prototype.isReactComponent)
  );
}

// This function takes a React element (e.g. <App />)
// and returns a DOM or Native node representing the mounted tree.
function mount(element) {
  var type = element.type;
  var props = element.props;

  // We will determine the rendered element
  // by either running the type as function
  // or creating an instance and calling render().
  var renderedElement;
  if (isClass(type)) {
    // Component class
    var publicInstance = new type(props);
    // Set the props
    publicInstance.props = props;
    // Call the lifecycle if necessary
    if (publicInstance.componentWillMount) {
      publicInstance.componentWillMount();
    }
    // Get the rendered element by calling render()
    renderedElement = publicInstance.render();
  } else {
    // Component function
    renderedElement = type(props);
  }

  // This process is recursive because a component may
  // return an element with a type of another component.
  return mount(renderedElement);

  // Note: this implementation is incomplete and recurses infinitely!
  // It only handles elements like <App /> or <Button />.
  // It doesn't handle elements like <div /> or <p /> yet.
}

var rootEl = document.getElementById('root');
var node = mount(<App />);
rootEl.appendChild(node);



Note:

This really is a pseudo-code. It isn’t similar to the real implementation. It will also cause a stack overflow because we haven’t discussed when to stop the recursion.



Let’s recap a few key ideas in the example above:


	React elements are plain objects representing the component type (e.g. App) and the props.

	User-defined components (e.g. App) can be classes or functions but they all “render to” elements.

	“Mounting” is a recursive process that creates a DOM or Native tree given the top-level React element (e.g. <App />).





Mounting Host Elements

This process would be useless if we didn’t render something to the screen as a result.

In addition to user-defined (“composite”) components, React elements may also represent platform-specific (“host”) components. For example, Button might return a <div /> from its render method.

If element’s type property is a string, we are dealing with a host element:

console.log(<div />);
// { type: 'div', props: {} }


There is no user-defined code associated with host elements.

When the reconciler encounters a host element, it lets the renderer take care of mounting it. For example, React DOM would create a DOM node.

If the host element has children, the reconciler recursively mounts them following the same algorithm as above. It doesn’t matter whether children are host (like <div><hr /></div>), composite (like <div><Button /></div>), or both.

The DOM nodes produced by the child components will be appended to the parent DOM node, and recursively, the complete DOM structure will be assembled.


Note:

The reconciler itself is not tied to the DOM. The exact result of mounting (sometimes called “mount image” in the source code) depends on the renderer, and can be a DOM node (React DOM), a string (React DOM Server), or a number representing a native view (React Native).



If we were to extend the code to handle host elements, it would look like this:

function isClass(type) {
  // React.Component subclasses have this flag
  return (
    Boolean(type.prototype) &&
    Boolean(type.prototype.isReactComponent)
  );
}

// This function only handles elements with a composite type.
// For example, it handles <App /> and <Button />, but not a <div />.
function mountComposite(element) {
  var type = element.type;
  var props = element.props;

  var renderedElement;
  if (isClass(type)) {
    // Component class
    var publicInstance = new type(props);
    // Set the props
    publicInstance.props = props;
    // Call the lifecycle if necessary
    if (publicInstance.componentWillMount) {
      publicInstance.componentWillMount();
    }
    renderedElement = publicInstance.render();
  } else if (typeof type === 'function') {
    // Component function
    renderedElement = type(props);
  }

  // This is recursive but we'll eventually reach the bottom of recursion when
  // the element is host (e.g. <div />) rather than composite (e.g. <App />):
  return mount(renderedElement);
}

// This function only handles elements with a host type.
// For example, it handles <div /> and <p /> but not an <App />.
function mountHost(element) {
  var type = element.type;
  var props = element.props;
  var children = props.children || [];
  if (!Array.isArray(children)) {
    children = [children];
  }
  children = children.filter(Boolean);

  // This block of code shouldn't be in the reconciler.
  // Different renderers might initialize nodes differently.
  // For example, React Native would create iOS or Android views.
  var node = document.createElement(type);
  Object.keys(props).forEach(propName => {
    if (propName !== 'children') {
      node.setAttribute(propName, props[propName]);
    }
  });

  // Mount the children
  children.forEach(childElement => {
    // Children may be host (e.g. <div />) or composite (e.g. <Button />).
    // We will also mount them recursively:
    var childNode = mount(childElement);

    // This line of code is also renderer-specific.
    // It would be different depending on the renderer:
    node.appendChild(childNode);
  });

  // Return the DOM node as mount result.
  // This is where the recursion ends.
  return node;
}

function mount(element) {
  var type = element.type;
  if (typeof type === 'function') {
    // User-defined components
    return mountComposite(element);
  } else if (typeof type === 'string') {
    // Platform-specific components
    return mountHost(element);
  }
}

var rootEl = document.getElementById('root');
var node = mount(<App />);
rootEl.appendChild(node);


This is working but still far from how the reconciler is really implemented. The key missing ingredient is support for updates.



Introducing Internal Instances

The key feature of React is that you can re-render everything, and it won’t recreate the DOM or reset the state:

root.render(<App />);
// Should reuse the existing DOM:
root.render(<App />);


However, our implementation above only knows how to mount the initial tree. It can’t perform updates on it because it doesn’t store all the necessary information, such as all the publicInstances, or which DOM nodes correspond to which components.

The stack reconciler codebase solves this by making the mount() function a method and putting it on a class. There are drawbacks to this approach, and we are going in the opposite direction in the ongoing rewrite of the reconciler. Nevertheless this is how it works now.

Instead of separate mountHost and mountComposite functions, we will create two classes: DOMComponent and CompositeComponent.

Both classes have a constructor accepting the element, as well as a mount() method returning the mounted node. We will replace a top-level mount() function with a factory that instantiates the correct class:

function instantiateComponent(element) {
  var type = element.type;
  if (typeof type === 'function') {
    // User-defined components
    return new CompositeComponent(element);
  } else if (typeof type === 'string') {
    // Platform-specific components
    return new DOMComponent(element);
  }  
}


First, let’s consider the implementation of CompositeComponent:

class CompositeComponent {
  constructor(element) {
    this.currentElement = element;
    this.renderedComponent = null;
    this.publicInstance = null;
  }

  getPublicInstance() {
    // For composite components, expose the class instance.
    return this.publicInstance;
  }

  mount() {
    var element = this.currentElement;
    var type = element.type;
    var props = element.props;

    var publicInstance;
    var renderedElement;
    if (isClass(type)) {
      // Component class
      publicInstance = new type(props);
      // Set the props
      publicInstance.props = props;
      // Call the lifecycle if necessary
      if (publicInstance.componentWillMount) {
        publicInstance.componentWillMount();
      }
      renderedElement = publicInstance.render();
    } else if (typeof type === 'function') {
      // Component function
      publicInstance = null;
      renderedElement = type(props);
    }

    // Save the public instance
    this.publicInstance = publicInstance;

    // Instantiate the child internal instance according to the element.
    // It would be a DOMComponent for <div /> or <p />,
    // and a CompositeComponent for <App /> or <Button />:
    var renderedComponent = instantiateComponent(renderedElement);
    this.renderedComponent = renderedComponent;

    // Mount the rendered output
    return renderedComponent.mount();
  }
}


This is not much different from our previous mountComposite() implementation, but now we can save some information, such as this.currentElement, this.renderedComponent, and this.publicInstance, for use during updates.

Note that an instance of CompositeComponent is not the same thing as an instance of the user-supplied element.type. CompositeComponent is an implementation detail of our reconciler, and is never exposed to the user. The user-defined class is the one we read from element.type, and CompositeComponent creates an instance of it.

To avoid the confusion, we will call instances of CompositeComponent and DOMComponent “internal instances”. They exist so we can associate some long-lived data with them. Only the renderer and the reconciler are aware that they exist.

In contrast, we call an instance of the user-defined class a “public instance”. The public instance is what you see as this in the render() and other methods of your custom components.

The mountHost() function, refactored to be a mount() method on DOMComponent class, also looks familiar:

class DOMComponent {
  constructor(element) {
    this.currentElement = element;
    this.renderedChildren = [];
    this.node = null;
  }

  getPublicInstance() {
    // For DOM components, only expose the DOM node.
    return this.node;
  }

  mount() {
    var element = this.currentElement;
    var type = element.type;
    var props = element.props;
    var children = props.children || [];
    if (!Array.isArray(children)) {
      children = [children];
    }

    // Create and save the node
    var node = document.createElement(type);
    this.node = node;

    // Set the attributes
    Object.keys(props).forEach(propName => {
      if (propName !== 'children') {
        node.setAttribute(propName, props[propName]);
      }
    });

    // Create and save the contained children.
    // Each of them can be a DOMComponent or a CompositeComponent,
    // depending on whether the element type is a string or a function.
    var renderedChildren = children.map(instantiateComponent);
    this.renderedChildren = renderedChildren;

    // Collect DOM nodes they return on mount
    var childNodes = renderedChildren.map(child => child.mount());
    childNodes.forEach(childNode => node.appendChild(childNode));

    // Return the DOM node as mount result
    return node;
  }
}


The main difference after refactoring from mountHost() is that we now keep this.node and this.renderedChildren associated with the internal DOM component instance. We will also use them for applying non-destructive updates in the future.

As a result, each internal instance, composite or host, now points to its child internal instances. To help visualize this, if a function <App> component renders a <Button> class component, and Button class renders a <div>, the internal instance tree would look like this:

[object CompositeComponent] {
  currentElement: <App />,
  publicInstance: null,
  renderedComponent: [object CompositeComponent] {
    currentElement: <Button />,
    publicInstance: [object Button],
    renderedComponent: [object DOMComponent] {
      currentElement: <div />,
      node: [object HTMLDivElement],
      renderedChildren: []
    }
  }
}


In the DOM you would only see the <div>. However the internal instance tree contains both composite and host internal instances.

The composite internal instances need to store:


	The current element.

	The public instance if element type is a class.

	The single rendered internal instance. It can be either a DOMComponent or a CompositeComponent.



The host internal instances need to store:


	The current element.

	The DOM node.

	All the child internal instances. Each of them can be either a DOMComponent or a CompositeComponent.



If you’re struggling to imagine how an internal instance tree is structured in more complex applications, React DevTools can give you a close approximation, as it highlights host instances with grey, and composite instances with purple:

[image: React DevTools tree]

To complete this refactoring, we will introduce a function that mounts a complete tree into a container node and a public instance:

function mountTree(element, containerNode) {
  // Create the top-level internal instance
  var rootComponent = instantiateComponent(element);

  // Mount the top-level component into the container
  var node = rootComponent.mount();
  containerNode.appendChild(node);

  // Return the public instance it provides
  var publicInstance = rootComponent.getPublicInstance();
  return publicInstance;
}

var rootEl = document.getElementById('root');
mountTree(<App />, rootEl);




Unmounting

Now that we have internal instances that hold onto their children and the DOM nodes, we can implement unmounting. For a composite component, unmounting calls a lifecycle method and recurses.

class CompositeComponent {

  // ...

  unmount() {
    // Call the lifecycle method if necessary
    var publicInstance = this.publicInstance;
    if (publicInstance) {
      if (publicInstance.componentWillUnmount) {
        publicInstance.componentWillUnmount();
      }
    }

    // Unmount the single rendered component
    var renderedComponent = this.renderedComponent;
    renderedComponent.unmount();
  }
}


For DOMComponent, unmounting tells each child to unmount:

class DOMComponent {

  // ...

  unmount() {
    // Unmount all the children
    var renderedChildren = this.renderedChildren;
    renderedChildren.forEach(child => child.unmount());
  }
}


In practice, unmounting DOM components also removes the event listeners and clears some caches, but we will skip those details.

We can now add a new top-level function called unmountTree(containerNode) that is similar to ReactDOM.unmountComponentAtNode():

function unmountTree(containerNode) {
  // Read the internal instance from a DOM node:
  // (This doesn't work yet, we will need to change mountTree() to store it.)
  var node = containerNode.firstChild;
  var rootComponent = node._internalInstance;

  // Unmount the tree and clear the container
  rootComponent.unmount();
  containerNode.innerHTML = '';
}


In order for this to work, we need to read an internal root instance from a DOM node. We will modify mountTree() to add the _internalInstance property to the root DOM node. We will also teach mountTree() to destroy any existing tree so it can be called multiple times:

function mountTree(element, containerNode) {
  // Destroy any existing tree
  if (containerNode.firstChild) {
    unmountTree(containerNode);
  }

  // Create the top-level internal instance
  var rootComponent = instantiateComponent(element);

  // Mount the top-level component into the container
  var node = rootComponent.mount();
  containerNode.appendChild(node);

  // Save a reference to the internal instance
  node._internalInstance = rootComponent;

  // Return the public instance it provides
  var publicInstance = rootComponent.getPublicInstance();
  return publicInstance;
}


Now, running unmountTree(), or running mountTree() repeatedly, removes the old tree and runs the componentWillUnmount() lifecycle method on components.



Updating

In the previous section, we implemented unmounting. However React wouldn’t be very useful if each prop change unmounted and mounted the whole tree. The goal of the reconciler is to reuse existing instances where possible to preserve the DOM and the state:

var rootEl = document.getElementById('root');

mountTree(<App />, rootEl);
// Should reuse the existing DOM:
mountTree(<App />, rootEl);


We will extend our internal instance contract with one more method. In addition to mount() and unmount(), both DOMComponent and CompositeComponent will implement a new method called receive(nextElement):

class CompositeComponent {
  // ...

  receive(nextElement) {
    // ...
  }
}

class DOMComponent {
  // ...

  receive(nextElement) {
    // ...
  }
}


Its job is to do whatever is necessary to bring the component (and any of its children) up to date with the description provided by the nextElement.

This is the part that is often described as “virtual DOM diffing” although what really happens is that we walk the internal tree recursively and let each internal instance receive an update.



Updating Composite Components

When a composite component receives a new element, we run the componentWillUpdate() lifecycle method.

Then we re-render the component with the new props, and get the next rendered element:

class CompositeComponent {

  // ...

  receive(nextElement) {
    var prevProps = this.currentElement.props;
    var publicInstance = this.publicInstance;
    var prevRenderedComponent = this.renderedComponent;
    var prevRenderedElement = prevRenderedComponent.currentElement;

    // Update *own* element
    this.currentElement = nextElement;
    var type = nextElement.type;
    var nextProps = nextElement.props;

    // Figure out what the next render() output is
    var nextRenderedElement;
    if (isClass(type)) {
      // Component class
      // Call the lifecycle if necessary
      if (publicInstance.componentWillUpdate) {
        publicInstance.componentWillUpdate(nextProps);
      }
      // Update the props
      publicInstance.props = nextProps;
      // Re-render
      nextRenderedElement = publicInstance.render();
    } else if (typeof type === 'function') {
      // Component function
      nextRenderedElement = type(nextProps);
    }

    // ...


Next, we can look at the rendered element’s type. If the type has not changed since the last render, the component below can also be updated in place.

For example, if it returned <Button color="red" /> the first time, and <Button color="blue" /> the second time, we can just tell the corresponding internal instance to receive() the next element:

    // ...

    // If the rendered element type has not changed,
    // reuse the existing component instance and exit.
    if (prevRenderedElement.type === nextRenderedElement.type) {
      prevRenderedComponent.receive(nextRenderedElement);
      return;
    }

    // ...


However, if the next rendered element has a different type than the previously rendered element, we can’t update the internal instance. A <button> can’t “become” an <input>.

Instead, we have to unmount the existing internal instance and mount the new one corresponding to the rendered element type. For example, this is what happens when a component that previously rendered a <button /> renders an <input />:

    // ...

    // If we reached this point, we need to unmount the previously
    // mounted component, mount the new one, and swap their nodes.

    // Find the old node because it will need to be replaced
    var prevNode = prevRenderedComponent.getHostNode();

    // Unmount the old child and mount a new child
    prevRenderedComponent.unmount();
    var nextRenderedComponent = instantiateComponent(nextRenderedElement);
    var nextNode = nextRenderedComponent.mount();

    // Replace the reference to the child
    this.renderedComponent = nextRenderedComponent;

    // Replace the old node with the new one
    // Note: this is renderer-specific code and
    // ideally should live outside of CompositeComponent:
    prevNode.parentNode.replaceChild(nextNode, prevNode);
  }
}


To sum this up, when a composite component receives a new element, it may either delegate the update to its rendered internal instance, or unmount it and mount a new one in its place.

There is another condition under which a component will re-mount rather than receive an element, and that is when the element’s key has changed. We don’t discuss key handling in this document because it adds more complexity to an already complex tutorial.

Note that we needed to add a method called getHostNode() to the internal instance contract so that it’s possible to locate the platform-specific node and replace it during the update. Its implementation is straightforward for both classes:

class CompositeComponent {
  // ...

  getHostNode() {
    // Ask the rendered component to provide it.
    // This will recursively drill down any composites.
    return this.renderedComponent.getHostNode();
  }
}

class DOMComponent {
  // ...

  getHostNode() {
    return this.node;
  }  
}




Updating Host Components

Host component implementations, such as DOMComponent, update differently. When they receive an element, they need to update the underlying platform-specific view. In case of React DOM, this means updating the DOM attributes:

class DOMComponent {
  // ...

  receive(nextElement) {
    var node = this.node;
    var prevElement = this.currentElement;
    var prevProps = prevElement.props;
    var nextProps = nextElement.props;    
    this.currentElement = nextElement;

    // Remove old attributes.
    Object.keys(prevProps).forEach(propName => {
      if (propName !== 'children' && !nextProps.hasOwnProperty(propName)) {
        node.removeAttribute(propName);
      }
    });
    // Set next attributes.
    Object.keys(nextProps).forEach(propName => {
      if (propName !== 'children') {
        node.setAttribute(propName, nextProps[propName]);
      }
    });

    // ...


Then, host components need to update their children. Unlike composite components, they might contain more than a single child.

In this simplified example, we use an array of internal instances and iterate over it, either updating or replacing the internal instances depending on whether the received type matches their previous type. The real reconciler also takes element’s key in the account and track moves in addition to insertions and deletions, but we will omit this logic.

We collect DOM operations on children in a list so we can execute them in batch:

    // ...

    // These are arrays of React elements:
    var prevChildren = prevProps.children || [];
    if (!Array.isArray(prevChildren)) {
      prevChildren = [prevChildren];
    }
    var nextChildren = nextProps.children || [];
    if (!Array.isArray(nextChildren)) {
      nextChildren = [nextChildren];
    }
    // These are arrays of internal instances:
    var prevRenderedChildren = this.renderedChildren;
    var nextRenderedChildren = [];

    // As we iterate over children, we will add operations to the array.
    var operationQueue = [];

    // Note: the section below is extremely simplified!
    // It doesn't handle reorders, children with holes, or keys.
    // It only exists to illustrate the overall flow, not the specifics.

    for (var i = 0; i < nextChildren.length; i++) {
      // Try to get an existing internal instance for this child
      var prevChild = prevRenderedChildren[i];

      // If there is no internal instance under this index,
      // a child has been appended to the end. Create a new
      // internal instance, mount it, and use its node.
      if (!prevChild) {
        var nextChild = instantiateComponent(nextChildren[i]);
        var node = nextChild.mount();

        // Record that we need to append a node
        operationQueue.push({type: 'ADD', node});
        nextRenderedChildren.push(nextChild);
        continue;
      }

      // We can only update the instance if its element's type matches.
      // For example, <Button size="small" /> can be updated to
      // <Button size="large" /> but not to an <App />.
      var canUpdate = prevChildren[i].type === nextChildren[i].type;

      // If we can't update an existing instance, we have to unmount it
      // and mount a new one instead of it.
      if (!canUpdate) {
        var prevNode = prevChild.getHostNode();
        prevChild.unmount();

        var nextChild = instantiateComponent(nextChildren[i]);
        var nextNode = nextChild.mount();

        // Record that we need to swap the nodes
        operationQueue.push({type: 'REPLACE', prevNode, nextNode});
        nextRenderedChildren.push(nextChild);
        continue;
      }

      // If we can update an existing internal instance,
      // just let it receive the next element and handle its own update.
      prevChild.receive(nextChildren[i]);
      nextRenderedChildren.push(prevChild);
    }

    // Finally, unmount any children that don't exist:
    for (var j = nextChildren.length; j < prevChildren.length; j++) {
      var prevChild = prevRenderedChildren[j];
      var node = prevChild.getHostNode();
      prevChild.unmount();

      // Record that we need to remove the node
      operationQueue.push({type: 'REMOVE', node});
    }

    // Point the list of rendered children to the updated version.
    this.renderedChildren = nextRenderedChildren;

    // ...


As the last step, we execute the DOM operations. Again, the real reconciler code is more complex because it also handles moves:

    // ...

    // Process the operation queue.
    while (operationQueue.length > 0) {
      var operation = operationQueue.shift();
      switch (operation.type) {
      case 'ADD':
        this.node.appendChild(operation.node);
        break;
      case 'REPLACE':
        this.node.replaceChild(operation.nextNode, operation.prevNode);
        break;
      case 'REMOVE':
        this.node.removeChild(operation.node);
        break;
      }
    }
  }
}


And that is it for updating host components.



Top-Level Updates

Now that both CompositeComponent and DOMComponent implement the receive(nextElement) method, we can change the top-level mountTree() function to use it when the element type is the same as it was the last time:

function mountTree(element, containerNode) {
  // Check for an existing tree
  if (containerNode.firstChild) {
    var prevNode = containerNode.firstChild;
    var prevRootComponent = prevNode._internalInstance;
    var prevElement = prevRootComponent.currentElement;

    // If we can, reuse the existing root component
    if (prevElement.type === element.type) {
      prevRootComponent.receive(element);
      return;
    }

    // Otherwise, unmount the existing tree
    unmountTree(containerNode);
  }

  // ...

}


Now calling mountTree() two times with the same type isn’t destructive:

var rootEl = document.getElementById('root');

mountTree(<App />, rootEl);
// Reuses the existing DOM:
mountTree(<App />, rootEl);


These are the basics of how React works internally.



What We Left Out

This document is simplified compared to the real codebase. There are a few important aspects we didn’t address:


	Components can render null, and the reconciler can handle “empty slots” in arrays and rendered output.


	The reconciler also reads key from the elements, and uses it to establish which internal instance corresponds to which element in an array. A bulk of complexity in the actual React implementation is related to that.


	In addition to composite and host internal instance classes, there are also classes for “text” and “empty” components. They represent text nodes and the “empty slots” you get by rendering null.


	Renderers use injection to pass the host internal class to the reconciler. For example, React DOM tells the reconciler to use ReactDOMComponent as the host internal instance implementation.


	The logic for updating the list of children is extracted into a mixin called ReactMultiChild which is used by the host internal instance class implementations both in React DOM and React Native.


	The reconciler also implements support for setState() in composite components. Multiple updates inside event handlers get batched into a single update.


	The reconciler also takes care of attaching and detaching refs to composite components and host nodes.


	Lifecycle methods that are called after the DOM is ready, such as componentDidMount() and componentDidUpdate(), get collected into “callback queues” and are executed in a single batch.


	React puts information about the current update into an internal object called “transaction”. Transactions are useful for keeping track of the queue of pending lifecycle methods, the current DOM nesting for the warnings, and anything else that is “global” to a specific update. Transactions also ensure React “cleans everything up” after updates. For example, the transaction class provided by React DOM restores the input selection after any update.






Jumping into the Code


	ReactMount is where the code like mountTree() and unmountTree() from this tutorial lives. It takes care of mounting and unmounting top-level components. ReactNativeMount is its React Native analog.


	ReactDOMComponent is the equivalent of DOMComponent in this tutorial. It implements the host component class for React DOM renderer. ReactNativeBaseComponent is its React Native analog.


	ReactCompositeComponent is the equivalent of CompositeComponent in this tutorial. It handles calling user-defined components and maintaining their state.


	instantiateReactComponent contains the switch that picks the right internal instance class to construct for an element. It is equivalent to instantiateComponent() in this tutorial.


	ReactReconciler is a wrapper with mountComponent(), receiveComponent(), and unmountComponent() methods. It calls the underlying implementations on the internal instances, but also includes some code around them that is shared by all internal instance implementations.


	ReactChildReconciler implements the logic for mounting, updating, and unmounting children according to the key of their elements.


	ReactMultiChild implements processing the operation queue for child insertions, deletions, and moves independently of the renderer.


	mount(), receive(), and unmount() are really called mountComponent(), receiveComponent(), and unmountComponent() in React codebase for legacy reasons, but they receive elements.


	Properties on the internal instances start with an underscore, e.g. _currentElement. They are considered to be read-only public fields throughout the codebase.






Future Directions

Stack reconciler has inherent limitations such as being synchronous and unable to interrupt the work or split it in chunks. There is a work in progress on the new Fiber reconciler with a completely different architecture. In the future, we intend to replace stack reconciler with it, but at the moment it is far from feature parity.



Next Steps

Read the next section to learn about the guiding principles we use for React development.




Design Principles

We wrote this document so that you have a better idea of how we decide what React does and what React doesn’t do, and what our development philosophy is like. While we are excited to see community contributions, we are not likely to choose a path that violates one or more of these principles.


Note:

This document assumes a strong understanding of React. It describes the design principles of React itself, not React components or applications.

For an introduction to React, check out Thinking in React instead.




Composition

The key feature of React is composition of components. Components written by different people should work well together. It is important to us that you can add functionality to a component without causing rippling changes throughout the codebase.

For example, it should be possible to introduce some local state into a component without changing any of the components using it. Similarly, it should be possible to add some initialization and teardown code to any component when necessary.

There is nothing “bad” about using state or lifecycle methods in components. Like any powerful feature, they should be used in moderation, but we have no intention to remove them. On the contrary, we think they are integral parts of what makes React useful. We might enable more functional patterns in the future, but both local state and lifecycle methods will be a part of that model.

Components are often described as “just functions” but in our view they need to be more than that to be useful. In React, components describe any composable behavior, and this includes rendering, lifecycle, and state. Some external libraries like Relay augment components with other responsibilities such as describing data dependencies. It is possible that those ideas might make it back into React too in some form.



Common Abstraction

In general we resist adding features that can be implemented in userland. We don’t want to bloat your apps with useless library code. However, there are exceptions to this.

For example, if React didn’t provide support for local state or lifecycle methods, people would create custom abstractions for them. When there are multiple abstractions competing, React can’t enforce or take advantage of the properties of either of them. It has to work with the lowest common denominator.

This is why sometimes we add features to React itself. If we notice that many components implement a certain feature in incompatible or inefficient ways, we might prefer to bake it into React. We don’t do it lightly. When we do it, it’s because we are confident that raising the abstraction level benefits the whole ecosystem. State, lifecycle methods, cross-browser event normalization are good examples of this.

We always discuss such improvement proposals with the community. You can find some of those discussions by the “big picture” label on the React issue tracker.



Escape Hatches

React is pragmatic. It is driven by the needs of the products written at Facebook. While it is influenced by some paradigms that are not yet fully mainstream such as functional programming, staying accessible to a wide range of developers with different skills and experience levels is an explicit goal of the project.

If we want to deprecate a pattern that we don’t like, it is our responsibility to consider all existing use cases for it and educate the community about the alternatives before we deprecate it. If some pattern that is useful for building apps is hard to express in a declarative way, we will provide an imperative API for it. If we can’t figure out a perfect API for something that we found necessary in many apps, we will provide a temporary subpar working API as long as it is possible to get rid of it later and it leaves the door open for future improvements.



Stability

We value API stability. At Facebook, we have more than 50 thousand components using React. Many other companies, including Twitter and Airbnb, are also heavy users of React. This is why we are usually reluctant to change public APIs or behavior.

However we think stability in the sense of “nothing changes” is overrated. It quickly turns into stagnation. Instead, we prefer the stability in the sense of “It is heavily used in production, and when something changes, there is a clear (and preferably automated) migration path.”

When we deprecate a pattern, we study its internal usage at Facebook and add deprecation warnings. They let us assess the impact of the change. Sometimes we back out if we see that it is too early, and we need to think more strategically about getting the codebases to the point where they are ready for this change.

If we are confident that the change is not too disruptive and the migration strategy is viable for all use cases, we release the deprecation warning to the open source community. We are closely in touch with many users of React outside of Facebook, and we monitor popular open source projects and guide them in fixing those deprecations.

Given the sheer size of the Facebook React codebase, successful internal migration is often a good indicator that other companies won’t have problems either. Nevertheless sometimes people point out additional use cases we haven’t thought of, and we add escape hatches for them or rethink our approach.

We don’t deprecate anything without a good reason. We recognize that sometimes deprecations warnings cause frustration but we add them because deprecations clean up the road for the improvements and new features that we and many people in the community consider valuable.

For example, we added a warning about unknown DOM props in React 15.2.0. Many projects were affected by this. However fixing this warning is important so that we can introduce the support for custom attributes to React. There is a reason like this behind every deprecation that we add.

When we add a deprecation warning, we keep it for the rest of the current major version, and change the behavior in the next major version. If there is a lot of repetitive manual work involved, we release a codemod script that automates most of the change. Codemods enable us to move forward without stagnation in a massive codebase, and we encourage you to use them as well.

You can find the codemods that we released in the react-codemod repository.



Interoperability

We place high value in interoperability with existing systems and gradual adoption. Facebook has a massive non-React codebase. Its website uses a mix of a server-side component system called XHP, internal UI libraries that came before React, and React itself. It is important to us that any product team can start using React for a small feature rather than rewrite their code to bet on it.

This is why React provides escape hatches to work with mutable models, and tries to work well together with other UI libraries. You can wrap an existing imperative UI into a declarative component, and vice versa. This is crucial for gradual adoption.



Scheduling

Even when your components are described as functions, when you use React you don’t call them directly. Every component returns a description of what needs to be rendered, and that description may include both user-written components like <LikeButton> and platform-specific components like <div>. It is up to React to “unroll” <LikeButton> at some point in the future and actually apply changes to the UI tree according to the render results of the components recursively.

This is a subtle distinction but a powerful one. Since you don’t call that component function but let React call it, it means React has the power to delay calling it if necessary. In its current implementation React walks the tree recursively and calls render functions of the whole updated tree during a single tick. However in the future it might start delaying some updates to avoid dropping frames.

This is a common theme in React design. Some popular libraries implement the “push” approach where computations are performed when the new data is available. React, however, sticks to the “pull” approach where computations can be delayed until necessary.

React is not a generic data processing library. It is a library for building user interfaces. We think that it is uniquely positioned in an app to know which computations are relevant right now and which are not.

If something is offscreen, we can delay any logic related to it. If data is arriving faster than the frame rate, we can coalesce and batch updates. We can prioritize work coming from user interactions (such as an animation caused by a button click) over less important background work (such as rendering new content just loaded from the network) to avoid dropping frames.

To be clear, we are not taking advantage of this right now. However the freedom to do something like this is why we prefer to have control over scheduling, and why setState() is asynchronous. Conceptually, we think of it as “scheduling an update”.

The control over scheduling would be harder for us to gain if we let the user directly compose views with a “push” based paradigm common in some variations of Functional Reactive Programming. We want to own the “glue” code.

It is a key goal for React that the amount of the user code that executes before yielding back into React is minimal. This ensures that React retains the capability to schedule and split work in chunks according to what it knows about the UI.

There is an internal joke in the team that React should have been called “Schedule” because React does not want to be fully “reactive”.



Developer Experience

Providing a good developer experience is important to us.

For example, we maintain React DevTools which let you inspect the React component tree in Chrome and Firefox. We have heard that it brings a big productivity boost both to the Facebook engineers and to the community.

We also try to go an extra mile to provide helpful developer warnings. For example, React warns you in development if you nest tags in a way that the browser doesn’t understand, or if you make a common typo in the API. Developer warnings and the related checks are the main reason why the development version of React is slower than the production version.

The usage patterns that we see internally at Facebook help us understand what the common mistakes are, and how to prevent them early. When we add new features, we try to anticipate the common mistakes and warn about them.

We are always looking out for ways to improve the developer experience. We love to hear your suggestions and accept your contributions to make it even better.



Debugging

When something goes wrong, it is important that you have breadcrumbs to trace the mistake to its source in the codebase. In React, props and state are those breadcrumbs.

If you see something wrong on the screen, you can open React DevTools, find the component responsible for rendering, and then see if the props and state are correct. If they are, you know that the problem is in the component’s render() function, or some function that is called by render(). The problem is isolated.

If the state is wrong, you know that the problem is caused by one of the setState() calls in this file. This, too, is relatively simple to locate and fix because usually there are only a few setState() calls in a single file.

If the props are wrong, you can traverse the tree up in the inspector, looking for the component that first “poisoned the well” by passing bad props down.

This ability to trace any UI to the data that produced it in the form of current props and state is very important to React. It is an explicit design goal that state is not “trapped” in closures and combinators, and is available to React directly.

While the UI is dynamic, we believe that synchronous render() functions of props and state turn debugging from guesswork into a boring but finite procedure. We would like to preserve this constraint in React even though it makes some use cases, like complex animations, harder.



Configuration

We find global runtime configuration options to be problematic.

For example, it is occasionally requested that we implement a function like React.configure(options) or React.register(component). However this poses multiple problems, and we are not aware of good solutions to them.

What if somebody calls such a function from a third-party component library? What if one React app embeds another React app, and their desired configurations are incompatible? How can a third-party component specify that it requires a particular configuration? We think that global configuration doesn’t work well with composition. Since composition is central to React, we don’t provide global configuration in code.

We do, however, provide some global configuration on the build level. For example, we provide separate development and production builds. We may also add a profiling build in the future, and we are open to considering other build flags.



Beyond the DOM

We see the value of React in the way it allows us to write components that have fewer bugs and compose together well. DOM is the original rendering target for React but React Native is just as important both to Facebook and the community.

Being renderer-agnostic is an important design constraint of React. It adds some overhead in the internal representations. On the other hand, any improvements to the core translate across platforms.

Having a single programming model lets us form engineering teams around products instead of platforms. So far the tradeoff has been worth it for us.



Implementation

We try to provide elegant APIs where possible. We are much less concerned with the implementation being elegant. The real world is far from perfect, and to a reasonable extent we prefer to put the ugly code into the library if it means the user does not have to write it. When we evaluate new code, we are looking for an implementation that is correct, performant and affords a good developer experience. Elegance is secondary.

We prefer boring code to clever code. Code is disposable and often changes. So it is important that it doesn’t introduce new internal abstractions unless absolutely necessary. Verbose code that is easy to move around, change and remove is preferred to elegant code that is prematurely abstracted and hard to change.



Optimized for Tooling

Some commonly used APIs have verbose names. For example, we use componentDidMount() instead of didMount() or onMount(). This is intentional. The goal is to make the points of interaction with the library highly visible.

In a massive codebase like Facebook, being able to search for uses of specific APIs is very important. We value distinct verbose names, and especially for the features that should be used sparingly. For example, dangerouslySetInnerHTML is hard to miss in a code review.

Optimizing for search is also important because of our reliance on codemods to make breaking changes. We want it to be easy and safe to apply vast automated changes across the codebase, and unique verbose names help us achieve this. Similarly, distinctive names make it easy to write custom lint rules about using React without worrying about potential false positives.

JSX plays a similar role. While it is not required with React, we use it extensively at Facebook both for aesthetic and pragmatic reasons.

In our codebase, JSX provides an unambiguous hint to the tools that they are dealing with a React element tree. This makes it possible to add build-time optimizations such as hoisting constant elements, safely lint and codemod internal component usage, and include JSX source location into the warnings.



Dogfooding

We try our best to address the problems raised by the community. However we are likely to prioritize the issues that people are also experiencing internally at Facebook. Perhaps counter-intuitively, we think this is the main reason why the community can bet on React.

Heavy internal usage gives us the confidence that React won’t disappear tomorrow. React was created at Facebook to solve its problems. It brings tangible business value to the company and is used in many of its products. Dogfooding it means that our vision stays sharp and we have a focused direction going forward.

This doesn’t mean that we ignore the issues raised by the community. For example, we added support for web components and SVG to React even though we don’t rely on either of them internally. We are actively listening to your pain points and address them to the best of our ability. The community is what makes React special to us, and we are honored to contribute back.

After releasing many open source projects at Facebook, we have learned that trying to make everyone happy at the same time produced projects with poor focus that didn’t grow well. Instead, we found that picking a small audience and focusing on making them happy brings a positive net effect. That’s exactly what we did with React, and so far solving the problems encountered by Facebook product teams has translated well to the open source community.

The downside of this approach is that sometimes we fail to give enough focus to the things that Facebook teams don’t have to deal with, such as the “getting started” experience. We are acutely aware of this, and we are thinking of how to improve in a way that would benefit everyone in the community without making the same mistakes we did with open source projects before.







  
  
  ch009.xhtml
  
  




FAQ


AJAX and APIs


How can I make an AJAX call?

You can use any AJAX library you like with React. Some popular ones are Axios, jQuery AJAX, and the browser built-in window.fetch.



Where in the component lifecycle should I make an AJAX call?

You should populate data with AJAX calls in the componentDidMount lifecycle method. This is so you can use setState to update your component when the data is retrieved.



Example: Using AJAX results to set local state

The component below demonstrates how to make an AJAX call in componentDidMount to populate local component state.

The example API returns a JSON object like this:

{
  "items": [
    { "id": 1, "name": "Apples",  "price": "$2" },
    { "id": 2, "name": "Peaches", "price": "$5" }
  ] 
}

class MyComponent extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      error: null,
      isLoaded: false,
      items: []
    };
  }

  componentDidMount() {
    fetch("https://api.example.com/items")
      .then(res => res.json())
      .then(
        (result) => {
          this.setState({
            isLoaded: true,
            items: result.items
          });
        },
        // Note: it's important to handle errors here
        // instead of a catch() block so that we don't swallow
        // exceptions from actual bugs in components.
        (error) => {
          this.setState({
            isLoaded: true,
            error
          });
        }
      )
  }

  render() {
    const { error, isLoaded, items } = this.state;
    if (error) {
      return <div>Error: {error.message}</div>;
    } else if (!isLoaded) {
      return <div>Loading...</div>;
    } else {
      return (
        <ul>
          {items.map(item => (
            <li key={item.id}>
              {item.name} {item.price}
            </li>
          ))}
        </ul>
      );
    }
  }
}


Here is the equivalent with Hooks:

function MyComponent() {
  const [error, setError] = useState(null);
  const [isLoaded, setIsLoaded] = useState(false);
  const [items, setItems] = useState([]);

  // Note: the empty deps array [] means
  // this useEffect will run once
  // similar to componentDidMount()
  useEffect(() => {
    fetch("https://api.example.com/items")
      .then(res => res.json())
      .then(
        (result) => {
          setIsLoaded(true);
          setItems(result);
        },
        // Note: it's important to handle errors here
        // instead of a catch() block so that we don't swallow
        // exceptions from actual bugs in components.
        (error) => {
          setIsLoaded(true);
          setError(error);
        }
      )
  }, [])

  if (error) {
    return <div>Error: {error.message}</div>;
  } else if (!isLoaded) {
    return <div>Loading...</div>;
  } else {
    return (
      <ul>
        {items.map(item => (
          <li key={item.id}>
            {item.name} {item.price}
          </li>
        ))}
      </ul>
    );
  }
}





Babel, JSX, and Build Steps


Do I need to use JSX with React?

No! Check out “React Without JSX” to learn more.



Do I need to use ES6 (+) with React?

No! Check out “React Without ES6” to learn more.



How can I write comments in JSX?

<div>
  {/* Comment goes here */}
  Hello, {name}!
</div>


<div>
  {/* It also works 
  for multi-line comments. */}
  Hello, {name}! 
</div>





Passing Functions to Components


How do I pass an event handler (like onClick) to a component?

Pass event handlers and other functions as props to child components:

<button onClick={this.handleClick}>


If you need to have access to the parent component in the handler, you also need to bind the function to the component instance (see below).



How do I bind a function to a component instance?

There are several ways to make sure functions have access to component attributes like this.props and this.state, depending on which syntax and build steps you are using.


Bind in Constructor (ES2015)

class Foo extends Component {
  constructor(props) {
    super(props);
    this.handleClick = this.handleClick.bind(this);
  }
  handleClick() {
    console.log('Click happened');
  }
  render() {
    return <button onClick={this.handleClick}>Click Me</button>;
  }
}




Class Properties (ES2022)

class Foo extends Component {
  handleClick = () => {
    console.log('Click happened');
  };
  render() {
    return <button onClick={this.handleClick}>Click Me</button>;
  }
}




Bind in Render

class Foo extends Component {
  handleClick() {
    console.log('Click happened');
  }
  render() {
    return <button onClick={this.handleClick.bind(this)}>Click Me</button>;
  }
}



Note:

Using Function.prototype.bind in render creates a new function each time the component renders, which may have performance implications (see below).





Arrow Function in Render

class Foo extends Component {
  handleClick() {
    console.log('Click happened');
  }
  render() {
    return <button onClick={() => this.handleClick()}>Click Me</button>;
  }
}



Note:

Using an arrow function in render creates a new function each time the component renders, which may break optimizations based on strict identity comparison.






Is it OK to use arrow functions in render methods?

Generally speaking, yes, it is OK, and it is often the easiest way to pass parameters to callback functions.

If you do have performance issues, by all means, optimize!



Why is binding necessary at all?

In JavaScript, these two code snippets are not equivalent:

obj.method();


var method = obj.method;
method();


Binding methods helps ensure that the second snippet works the same way as the first one.

With React, typically you only need to bind the methods you pass to other components. For example, <button onClick={this.handleClick}> passes this.handleClick so you want to bind it. However, it is unnecessary to bind the render method or the lifecycle methods: we don’t pass them to other components.

This post by Yehuda Katz explains what binding is, and how functions work in JavaScript, in detail.



Why is my function being called every time the component renders?

Make sure you aren’t calling the function when you pass it to the component:

render() {
  // Wrong: handleClick is called instead of passed as a reference!
  return <button onClick={this.handleClick()}>Click Me</button>
}


Instead, pass the function itself (without parens):

render() {
  // Correct: handleClick is passed as a reference!
  return <button onClick={this.handleClick}>Click Me</button>
}




How do I pass a parameter to an event handler or callback?

You can use an arrow function to wrap around an event handler and pass parameters:

<button onClick={() => this.handleClick(id)} />


This is equivalent to calling .bind:

<button onClick={this.handleClick.bind(this, id)} />



Example: Passing params using arrow functions

const A = 65 // ASCII character code

class Alphabet extends React.Component {
  constructor(props) {
    super(props);
    this.state = {
      justClicked: null,
      letters: Array.from({length: 26}, (_, i) => String.fromCharCode(A + i))
    };
  }
  handleClick(letter) {
    this.setState({ justClicked: letter });
  }
  render() {
    return (
      <div>
        Just clicked: {this.state.justClicked}
        <ul>
          {this.state.letters.map(letter =>
            <li key={letter} onClick={() => this.handleClick(letter)}>
              {letter}
            </li>
          )}
        </ul>
      </div>
    )
  }
}




Example: Passing params using data-attributes

Alternately, you can use DOM APIs to store data needed for event handlers. Consider this approach if you need to optimize a large number of elements or have a render tree that relies on React.PureComponent equality checks.

const A = 65 // ASCII character code

class Alphabet extends React.Component {
  constructor(props) {
    super(props);
    this.handleClick = this.handleClick.bind(this);
    this.state = {
      justClicked: null,
      letters: Array.from({length: 26}, (_, i) => String.fromCharCode(A + i))
    };
  }

  handleClick(e) {
    this.setState({
      justClicked: e.target.dataset.letter
    });
  }

  render() {
    return (
      <div>
        Just clicked: {this.state.justClicked}
        <ul>
          {this.state.letters.map(letter =>
            <li key={letter} data-letter={letter} onClick={this.handleClick}>
              {letter}
            </li>
          )}
        </ul>
      </div>
    )
  }
}





How can I prevent a function from being called too quickly or too many times in a row?

If you have an event handler such as onClick or onScroll and want to prevent the callback from being fired too quickly, then you can limit the rate at which callback is executed. This can be done by using:


	throttling: sample changes based on a time based frequency (eg _.throttle)

	debouncing: publish changes after a period of inactivity (eg _.debounce)

	requestAnimationFrame throttling: sample changes based on requestAnimationFrame (eg raf-schd)



See this visualization for a comparison of throttle and debounce functions.


Note:

_.debounce, _.throttle and raf-schd provide a cancel method to cancel delayed callbacks. You should either call this method from componentWillUnmount or check to ensure that the component is still mounted within the delayed function.




Throttle

Throttling prevents a function from being called more than once in a given window of time. The example below throttles a “click” handler to prevent calling it more than once per second.

import throttle from 'lodash.throttle';

class LoadMoreButton extends React.Component {
  constructor(props) {
    super(props);
    this.handleClick = this.handleClick.bind(this);
    this.handleClickThrottled = throttle(this.handleClick, 1000);
  }

  componentWillUnmount() {
    this.handleClickThrottled.cancel();
  }

  render() {
    return <button onClick={this.handleClickThrottled}>Load More</button>;
  }

  handleClick() {
    this.props.loadMore();
  }
}




Debounce

Debouncing ensures that a function will not be executed until after a certain amount of time has passed since it was last called. This can be useful when you have to perform some expensive calculation in response to an event that might dispatch rapidly (eg scroll or keyboard events). The example below debounces text input with a 250ms delay.

import debounce from 'lodash.debounce';

class Searchbox extends React.Component {
  constructor(props) {
    super(props);
    this.handleChange = this.handleChange.bind(this);
    this.emitChangeDebounced = debounce(this.emitChange, 250);
  }

  componentWillUnmount() {
    this.emitChangeDebounced.cancel();
  }

  render() {
    return (
      <input
        type="text"
        onChange={this.handleChange}
        placeholder="Search..."
        defaultValue={this.props.value}
      />
    );
  }

  handleChange(e) {
    this.emitChangeDebounced(e.target.value);
  }

  emitChange(value) {
    this.props.onChange(value);
  }
}




requestAnimationFrame throttling

requestAnimationFrame is a way of queuing a function to be executed in the browser at the optimal time for rendering performance. A function that is queued with requestAnimationFrame will fire in the next frame. The browser will work hard to ensure that there are 60 frames per second (60 fps). However, if the browser is unable to it will naturally limit the amount of frames in a second. For example, a device might only be able to handle 30 fps and so you will only get 30 frames in that second. Using requestAnimationFrame for throttling is a useful technique in that it prevents you from doing more than 60 updates in a second. If you are doing 100 updates in a second this creates additional work for the browser that the user will not see anyway.


Note:

Using this technique will only capture the last published value in a frame. You can see an example of how this optimization works on MDN



import rafSchedule from 'raf-schd';

class ScrollListener extends React.Component {
  constructor(props) {
    super(props);

    this.handleScroll = this.handleScroll.bind(this);

    // Create a new function to schedule updates.
    this.scheduleUpdate = rafSchedule(
      point => this.props.onScroll(point)
    );
  }

  handleScroll(e) {
    // When we receive a scroll event, schedule an update.
    // If we receive many updates within a frame, we'll only publish the latest value.
    this.scheduleUpdate({ x: e.clientX, y: e.clientY });
  }

  componentWillUnmount() {
    // Cancel any pending updates since we're unmounting.
    this.scheduleUpdate.cancel();
  }

  render() {
    return (
      <div
        style={{ overflow: 'scroll' }}
        onScroll={this.handleScroll}
      >
        <img src="/my-huge-image.jpg" />
      </div>
    );
  }
}




Testing your rate limiting

When testing your rate limiting code works correctly it is helpful to have the ability to fast forward time. If you are using jest then you can use mock timers to fast forward time. If you are using requestAnimationFrame throttling then you may find raf-stub to be a useful tool to control the ticking of animation frames.





Component State


What does setState do?

setState() schedules an update to a component’s state object. When state changes, the component responds by re-rendering.



What is the difference between state and props?

props (short for “properties”) and state are both plain JavaScript objects. While both hold information that influences the output of render, they are different in one important way: props get passed to the component (similar to function parameters) whereas state is managed within the component (similar to variables declared within a function).

Here are some good resources for further reading on when to use props vs state: * Props vs State * ReactJS: Props vs. State



Why is setState giving me the wrong value?

In React, both this.props and this.state represent the rendered values, i.e. what’s currently on the screen.

Calls to setState are asynchronous - don’t rely on this.state to reflect the new value immediately after calling setState. Pass an updater function instead of an object if you need to compute values based on the current state (see below for details).

Example of code that will not behave as expected:

incrementCount() {
  // Note: this will *not* work as intended.
  this.setState({count: this.state.count + 1});
}

handleSomething() {
  // Let's say `this.state.count` starts at 0.
  this.incrementCount();
  this.incrementCount();
  this.incrementCount();
  // When React re-renders the component, `this.state.count` will be 1, but you expected 3.

  // This is because `incrementCount()` function above reads from `this.state.count`,
  // but React doesn't update `this.state.count` until the component is re-rendered.
  // So `incrementCount()` ends up reading `this.state.count` as 0 every time, and sets it to 1.

  // The fix is described below!
}


See below for how to fix this problem.



How do I update state with values that depend on the current state?

Pass a function instead of an object to setState to ensure the call always uses the most updated version of state (see below).



What is the difference between passing an object or a function in setState?

Passing an update function allows you to access the current state value inside the updater. Since setState calls are batched, this lets you chain updates and ensure they build on top of each other instead of conflicting:

incrementCount() {
  this.setState((state) => {
    // Important: read `state` instead of `this.state` when updating.
    return {count: state.count + 1}
  });
}

handleSomething() {
  // Let's say `this.state.count` starts at 0.
  this.incrementCount();
  this.incrementCount();
  this.incrementCount();

  // If you read `this.state.count` now, it would still be 0.
  // But when React re-renders the component, it will be 3.
}


Learn more about setState



When is setState asynchronous?

Currently, setState is asynchronous inside event handlers.

This ensures, for example, that if both Parent and Child call setState during a click event, Child isn’t re-rendered twice. Instead, React “flushes” the state updates at the end of the browser event. This results in significant performance improvements in larger apps.

This is an implementation detail so avoid relying on it directly. In the future versions, React will batch updates by default in more cases.



Why doesn’t React update this.state synchronously?

As explained in the previous section, React intentionally “waits” until all components call setState() in their event handlers before starting to re-render. This boosts performance by avoiding unnecessary re-renders.

However, you might still be wondering why React doesn’t just update this.state immediately without re-rendering.

There are two main reasons:


	This would break the consistency between props and state, causing issues that are very hard to debug.

	This would make some of the new features we’re working on impossible to implement.



This GitHub comment dives deep into the specific examples.



Should I use a state management library like Redux or MobX?

Maybe.

It’s a good idea to get to know React first, before adding in additional libraries. You can build quite complex applications using only React.




Styling and CSS


How do I add CSS classes to components?

Pass a string as the className prop:

render() {
  return <span className="menu navigation-menu">Menu</span>
}


It is common for CSS classes to depend on the component props or state:

render() {
  let className = 'menu';
  if (this.props.isActive) {
    className += ' menu-active';
  }
  return <span className={className}>Menu</span>
}



Tip

If you often find yourself writing code like this, classnames package can simplify it.





Can I use inline styles?

Yes, see the docs on styling here.



Are inline styles bad?

CSS classes are generally better for performance than inline styles.



What is CSS-in-JS?

“CSS-in-JS” refers to a pattern where CSS is composed using JavaScript instead of defined in external files.

Note that this functionality is not a part of React, but provided by third-party libraries. React does not have an opinion about how styles are defined; if in doubt, a good starting point is to define your styles in a separate *.css file as usual and refer to them using className.



Can I do animations in React?

React can be used to power animations. See React Transition Group, React Motion, React Spring, or Framer Motion, for example.




File Structure


Is there a recommended way to structure React projects?

React doesn’t have opinions on how you put files into folders. That said there are a few common approaches popular in the ecosystem you may want to consider.


Grouping by features or routes

One common way to structure projects is to locate CSS, JS, and tests together inside folders grouped by feature or route.

common/
  Avatar.js
  Avatar.css
  APIUtils.js
  APIUtils.test.js
feed/
  index.js
  Feed.js
  Feed.css
  FeedStory.js
  FeedStory.test.js
  FeedAPI.js
profile/
  index.js
  Profile.js
  ProfileHeader.js
  ProfileHeader.css
  ProfileAPI.js

The definition of a “feature” is not universal, and it is up to you to choose the granularity. If you can’t come up with a list of top-level folders, you can ask the users of your product what major parts it consists of, and use their mental model as a blueprint.



Grouping by file type

Another popular way to structure projects is to group similar files together, for example:

api/
  APIUtils.js
  APIUtils.test.js
  ProfileAPI.js
  UserAPI.js
components/
  Avatar.js
  Avatar.css
  Feed.js
  Feed.css
  FeedStory.js
  FeedStory.test.js
  Profile.js
  ProfileHeader.js
  ProfileHeader.css

Some people also prefer to go further, and separate components into different folders depending on their role in the application. For example, Atomic Design is a design methodology built on this principle. Remember that it’s often more productive to treat such methodologies as helpful examples rather than strict rules to follow.



Avoid too much nesting

There are many pain points associated with deep directory nesting in JavaScript projects. It becomes harder to write relative imports between them, or to update those imports when the files are moved. Unless you have a very compelling reason to use a deep folder structure, consider limiting yourself to a maximum of three or four nested folders within a single project. Of course, this is only a recommendation, and it may not be relevant to your project.



Don’t overthink it

If you’re just starting a project, don’t spend more than five minutes on choosing a file structure. Pick any of the above approaches (or come up with your own) and start writing code! You’ll likely want to rethink it anyway after you’ve written some real code.

If you feel completely stuck, start by keeping all files in a single folder. Eventually it will grow large enough that you will want to separate some files from the rest. By that time you’ll have enough knowledge to tell which files you edit together most often. In general, it is a good idea to keep files that often change together close to each other. This principle is called “colocation”.

As projects grow larger, they often use a mix of both of the above approaches in practice. So choosing the “right” one in the beginning isn’t very important.





Versioning Policy

React follows semantic versioning (semver) principles.

That means that with a version number x.y.z:


	When releasing critical bug fixes, we make a patch release by changing the z number (ex: 15.6.2 to 15.6.3).

	When releasing new features or non-critical fixes, we make a minor release by changing the y number (ex: 15.6.2 to 15.7.0).

	When releasing breaking changes, we make a major release by changing the x number (ex: 15.6.2 to 16.0.0).



Major releases can also contain new features, and any release can include bug fixes.

Minor releases are the most common type of release.


This versioning policy does not apply to prerelease builds in the Next or Experimental channels. Learn more about prereleases.




Breaking Changes

Breaking changes are inconvenient for everyone, so we try to minimize the number of major releases – for example, React 15 was released in April 2016 and React 16 was released in September 2017, and React 17 was released in October 2020.

Instead, we release new features in minor versions. That means that minor releases are often more interesting and compelling than majors, despite their unassuming name.



Commitment to Stability

As we change React over time, we try to minimize the effort required to take advantage of new features. When possible, we’ll keep an older API working, even if that means putting it in a separate package. For example, mixins have been discouraged for years but they’re supported to this day via create-react-class and many codebases continue to use them in stable, legacy code.

Over a million developers use React, collectively maintaining millions of components. The Facebook codebase alone has over 50,000 React components. That means we need to make it as easy as possible to upgrade to new versions of React; if we make large changes without a migration path, people will be stuck on old versions. We test these upgrade paths on Facebook itself – if our team of less than 10 people can update 50,000+ components alone, we hope the upgrade will be manageable for anyone using React. In many cases, we write automated scripts to upgrade component syntax, which we then include in the open-source release for everyone to use.



Gradual Upgrades via Warnings

Development builds of React include many helpful warnings. Whenever possible, we add warnings in preparation for future breaking changes. That way, if your app has no warnings on the latest release, it will be compatible with the next major release. This allows you to upgrade your apps one component at a time.

Development warnings won’t affect the runtime behavior of your app. That way, you can feel confident that your app will behave the same way between the development and production builds – the only differences are that the production build won’t log the warnings and that it is more efficient. (If you ever notice otherwise, please file an issue.)



What Counts as a Breaking Change?

In general, we don’t bump the major version number for changes to:


	Development warnings. Since these don’t affect production behavior, we may add new warnings or modify existing warnings in between major versions. In fact, this is what allows us to reliably warn about upcoming breaking changes.

	APIs starting with unstable_. These are provided as experimental features whose APIs we are not yet confident in. By releasing these with an unstable_ prefix, we can iterate faster and get to a stable API sooner.

	Alpha and canary versions of React. We provide alpha versions of React as a way to test new features early, but we need the flexibility to make changes based on what we learn in the alpha period. If you use these versions, note that APIs may change before the stable release.

	Undocumented APIs and internal data structures. If you access internal property names like __SECRET_INTERNALS_DO_NOT_USE_OR_YOU_WILL_BE_FIRED or __reactInternalInstance$uk43rzhitjg, there is no warranty. You are on your own.



This policy is designed to be pragmatic: certainly, we don’t want to cause headaches for you. If we bumped the major version for all of these changes, we would end up releasing more major versions and ultimately causing more versioning pain for the community. It would also mean that we can’t make progress in improving React as fast as we’d like.

That said, if we expect that a change on this list will cause broad problems in the community, we will still do our best to provide a gradual migration path.



If a Minor Release Includes No New Features, Why Isn’t It a Patch?

It’s possible that a minor release will not include new features. This is allowed by semver, which states “[a minor version] MAY be incremented if substantial new functionality or improvements are introduced within the private code. It MAY include patch level changes.”

However, it does raise the question of why these releases aren’t versioned as patches instead.

The answer is that any change to React (or other software) carries some risk of breaking in unexpected ways. Imagine a scenario where a patch release that fixes one bug accidentally introduces a different bug. This would not only be disruptive to developers, but also harm their confidence in future patch releases. It’s especially regrettable if the original fix is for a bug that is rarely encountered in practice.

We have a pretty good track record for keeping React releases free of bugs, but patch releases have an even higher bar for reliability because most developers assume they can be adopted without adverse consequences.

For these reasons, we reserve patch releases only for the most critical bugs and security vulnerabilities.

If a release includes non-essential changes — such as internal refactors, changes to implementation details, performance improvements, or minor bugfixes — we will bump the minor version even when there are no new features.




Virtual DOM and Internals


What is the Virtual DOM?

The virtual DOM (VDOM) is a programming concept where an ideal, or “virtual”, representation of a UI is kept in memory and synced with the “real” DOM by a library such as ReactDOM. This process is called reconciliation.

This approach enables the declarative API of React: You tell React what state you want the UI to be in, and it makes sure the DOM matches that state. This abstracts out the attribute manipulation, event handling, and manual DOM updating that you would otherwise have to use to build your app.

Since “virtual DOM” is more of a pattern than a specific technology, people sometimes say it to mean different things. In React world, the term “virtual DOM” is usually associated with React elements since they are the objects representing the user interface. React, however, also uses internal objects called “fibers” to hold additional information about the component tree. They may also be considered a part of “virtual DOM” implementation in React.



Is the Shadow DOM the same as the Virtual DOM?

No, they are different. The Shadow DOM is a browser technology designed primarily for scoping variables and CSS in web components. The virtual DOM is a concept implemented by libraries in JavaScript on top of browser APIs.



What is “React Fiber”?

Fiber is the new reconciliation engine in React 16. Its main goal is to enable incremental rendering of the virtual DOM. Read more.





EPUB/media/file6.gif
Select an option
Load the option
Remove the option





EPUB/media/file4.png
©

Only show products in stock

Name Price
Sporting Goods

iPod Touch $99.99

Football  $49.99

Baseball  $9.99

Basketball $29.99
Electronics

iPhone 5 $399.99
Nexus7  $199.99

®
©O)
©





EPUB/media/file1.gif
Hello, world!
It is 12:26:46 PM.

Console Sources  Network  Timeline
v<div id="root">
v<div data-reactroot>
<h1-Hello, world!</h1>
v<h2>

<1-- react-text: 4 ——>

It is "
/react-text
react-text: 5 —
"12:26:46 PM"
/react-text
react-text: 6 —

/react-text ——>
</h2>
</div>
</div>





EPUB/media/file13.png
& @

G No Reconcillation needed

SCU. shouldCompanentUpdate?
scu

VDOMEQ 416 yirual DOMS equivalent?
VDOMEQ





EPUB/media/file9.png
»>React caught an error thrown by BuggyCounter. You should fix this error in your code. react-dom.development.js:7708
React will try to recreate this component tree from scratch using the error boundary you provided, ErrorBoundary.

Error: I crashed!

The error is located at:
in BuggyCounter (created by App)
in ErrorBoundary (created by App)
in div (created by App)
in App





EPUB/media/file7.gif
Select an option
Load the option
Remove the option





EPUB/media/file10.png
»>React caught an error thrown by BuggyCounter. You should fix this error in your code. react-dom.development.js:7708
React will try to recreate this component tree from scratch using the error boundary you provided, ErrorBoundary.

Error: I crashed!

The error is located at:
in BuggyCounter (at App.js:26)
in ErrorBoundary (at App.js:21)
in div (at App.js:8)
in App (at index.js:5)






EPUB/media/file5.png
Next —!





EPUB/media/file15.png
© PWarning: Legacy context API has been detected within a strict-mode tree:
in div (at App.js:32)
in App (at index.js:7)

Please update the following components: LegacyContextConsumer, LegacyContextProvider

Learn more about this warning here:
https://fb.me/react-strict-mode-warnings






EPUB/media/file14.png
»Warning: Unsafe lifecycle methods were found within a strict-mode tree:
in div (created by ExampleApplication)
in ExampleApplication

componentWillMount: Please update the following components to use componentDidMount instead: ThirdPartyComponent

Learn more about this warning here:
https://fb.me/react-strict-mode-warnings






EPUB/media/file8.gif
Select an option
Load the option
Remove the option





EPUB/media/file11.png
* @8

This page is using the production build of React.
Open the developer tools, and the React tab will appear to the right.





EPUB/media/file16.png
<TodoApp>
V<div>
<h3>T0OD0</h3>
¥ <TodoList items=[{..}]>
vY<ul>
<1i key="1475260226151">Buy milk</li>
</ul>
</TodoList>
v<form onSubmit=bound handleSubmit()>
<input onChange=bound onChange() value=""/>
<button>Add #2</button>
</form>
</div>
</TodoApp>





EPUB/media/file12.png
*

This page is using the development build of React. ##
Open the developer tools, and the React tab will appear to the right.

Note that the development build is not suitable for production.
Make sure to use the production build before deployment.






EPUB/media/file3.png
Only show products in stock

Name  Price
Sporting Goods
Football ~ $49.99
Baseball $9.99
Basketball $29.99
Electronics

iPod Touch$99.99
iPhone 5 $399.99
Nexus7 ~ $199.99





EPUB/media/file0.png
X Headers Preview Response Timing

v General
Request URL: https://unpkg. con/ reactel
Request Method: GET
Status Code: @ 304
Remote Address: [2400:cb00:2048:1: : 681
Referrer Policy: no-referrer-when-downgra

v Response Headers

cache-control: public, max-age=31536000






EPUB/media/file2.gif
—Enter temperature in Celsius:

—Enter temperature in Fahrenheit:
‘The water would not b